885 resultados para CONTRAST SENSITIVITY
Resumo:
Purpose: To evaluate distance and near image quality after hybrid bi-aspheric multifocal central presbyLASIK treatments. Design: Consecutive case series. Methods: Sixty-four eyes of 32 patients consecutively treated with central presbyLASIK were assessed. The mean age of the patients was 51 ± 3 years with a mean spherical equivalent refraction of-1.08 ± 2.62 diopters (D) and mean astigmatism of 0.52 ± 0.42 D. Monocular corrected distance visual acuity (CDVA), corrected near visual acuity (CNVA), and distance corrected near visual acuity (DCNVA) of nondominant eyes; binocular uncorrected distance visual acuity (UDVA); uncorrected intermediate visual acuity (UIVA); distance corrected intermediate visual acuity (DCIVA); and uncorrected near visual acuity (UNVA) were assessed pre- and postoperatively. Subjective quality of vision and near vision was assessed using the 10-item Rasch-scaled Quality of Vision and Near Activity Visual Questionnaire, respectively. Results: At 1 year postoperatively, 93% of patients achieved 20/20 or better binocular UDVA; 90% and 97% of patients had J2 or better UNVA and UIVA, respectively; 7% lost 2 Snellen lines of CDVA; Strehl ratio reduced by ~-4% ± 14%. Defocus curves revealed a loss of half a Snellen line at best focus, with no change for intermediate vergence (-1.25 D) and a mean gain of 2 lines for near vergence (-3 D). Conclusions: Presbyopic treatment using a hybrid bi-aspheric micro-monovision ablation profile is safe and efficacious. The postoperative outcomes indicate improvements in binocular vision at far, intermediate, and near distances with improved contrast sensitivity. A 19% retreatment rate should be considered to increase satisfaction levels, besides a 3% reversal rate.
Resumo:
Purpose: Dementia is associated with various alterations of the eye and visual function. Over 60% of cases are attributable to Alzheimer's disease, a significant proportion of the remainder to vascular dementia or dementia with Lewy bodies, while frontotemporal dementia, and Parkinson's disease dementia are less common. This review describes the oculo-visual problems of these five dementias and the pathological changes which may explain these symptoms. It further discusses clinical considerations to help the clinician care for older patients affected by dementia. Recent findings: Visual problems in dementia include loss of visual acuity, defects in colour vision and visual masking tests, changes in pupillary response to mydriatics, defects in fixation and smooth and saccadic eye movements, changes in contrast sensitivity function and visual evoked potentials, and disturbance of complex visual functions such as in reading ability, visuospatial function, and the naming and identification of objects. Pathological changes have also been reported affecting the crystalline lens, retina, optic nerve, and visual cortex. Clinically, issues such as cataract surgery, correcting the refractive error, quality of life, falls, visual impairment and eye care for dementia have been addressed. Summary: Many visual changes occur across dementias, are controversial, often based on limited patient numbers, and no single feature can be regarded as diagnostic of any specific dementia. Nevertheless, visual hallucinations may be more characteristic of dementia with Lewy bodies and Parkinson's disease dementia than Alzheimer's disease or frontotemporal dementia. Differences in saccadic eye movement dysfunction may also help to distinguish Alzheimer's disease from frontotemporal dementia and Parkinson's disease dementia from dementia with Lewy bodies. Eye care professionals need to keep informed of the growing literature in vision/dementia, be attentive to signs and symptoms suggestive of cognitive impairment, and be able to adapt their practice and clinical interventions to best serve patients with dementia.
Resumo:
Alzheimer's disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of β-amyloid (Aβ) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections. © 2012 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
Purpose: To examine visual outcomes following bilateral implantation of the FineVision trifocal intraocular lens (IOL; PhysIOL, Liège, Belgium). Methods: 26 patients undergoing routine cataract surgery were implanted bilaterally with the FineVision Trifocal IOL and followed up post-operatively for 3 months. The FineVision optic features a combination of 2 diffractive structures, resulting in distance, intermediate (+1.75 D add) and near vision (+3.50 D add) zones. Apodization of the optic surface increases far vision dominance with pupil aperture. Data collected at the 3 month visit included uncorrected and corrected distance (CDVA) and near vision; subjective refraction; defocus curve testing (photopic and mesopic); contrast sensitivity (CSV-1000); halometry glare testing and a questionnaire (NAVQ) to gauge near vision function and patient satisfaction. Results: The cohort comprised 15 males and 11 females, aged 52.5–82.4 years (mean 70.6 ± 8.2 years). Mean post-operative UDVA was 0.22 ± 0.14 logMAR, with a mean spherical equivalent refraction of +0.02 ± 0.35 D. Mean CDVA was 0.13 ± 0.10 logMAR monocularly, and 0.09 ± 0.07 logMAR binocularly. Defocus curve testing showed an extensive range of clear vision in both photopic and mesopic conditions. Patients showed high levels of satisfaction with their near vision (mean ± 0.9 ± 0.6, where 0 = completely satisfied, and 4 = completely unsatisfied) and demonstrated good spectacle independence. Conclusion: The FineVision IOL can be considered in patients seeking spectacle dependence following cataract surgery, and provide good patient satisfaction with uncorrected vision.
Resumo:
BACKGROUND: Previous studies have demonstrated an increase in macular pigment optical density (MPOD) with lutein (L)-based supplementation in healthy eyes. However, not all studies have assessed whether this increase in MPOD is associated with changes to other measures of retinal function such as the multifocal ERG (mfERG). Some studies also fail to report dietary levels of L and zeaxanthin (Z). Because of the associations between increased levels of L and Z, and reduced risk of AMD, this study was designed to assess the effects of L-based supplementation on mfERG amplitudes and latencies in healthy eyes. METHODS: Multifocal ERG amplitudes, visual acuity, contrast sensitivity, MPOD and dietary levels of L and Z were assessed in this longitudinal, randomized clinical trial. Fifty-two healthy eyes from 52 participants were randomly allocated to receive a L-based supplement (treated group), or no supplement (non-treated group). RESULTS: There were 25 subjects aged 18-77 (mean age ± SD; 48 ± 17) in the treated group and 27 subjects aged 21-69 (mean age ± SD; 43 ± 16) in the non-treated group. All participants attended for three visits: visit one at baseline, visit two at 20 weeks and visit three at 40 weeks. A statistically significant increase in MPOD (F = 17.0, p ≤ 0.001) and shortening of mfERG ring 2 P1 latency (F = 3.69, p = 0.04) was seen in the treated group. CONCLUSIONS: Although the results were not clinically significant, the reported trend for improvement in MPOD and mfERG outcomes warrants further investigation.
Resumo:
PURPOSE: To quantitatively evaluate visual function 12 months after bilateral implantation of the Physiol FineVision® trifocal intraocular lens (IOL) and to compare these results with those obtained in the first postoperative month. METHODS: In this prospective case series, 20 eyes of 10 consecutive patients were included. Monocular and binocular, uncorrected and corrected visual acuities (distance, near, and intermediate) were measured. Metrovision® was used to test contrast sensitivity under static and dynamic conditions, both in photopic and low-mesopic settings. The same software was used for pupillometry and glare evaluation. Motion, achromatic, and chromatic contrast discrimination were tested using 2 innovative psychophysical tests. A complete ophthalmologic examination was performed preoperatively and at 1, 3, 6, and 12 months postoperatively. Psychophysical tests were performed 1 month after surgery and repeated 12 months postoperatively. RESULTS: Final distance uncorrected visual acuity (VA) was 0.00 ± 0.08 and distance corrected VA was 0.00 ± 0.05 logMAR. Distance corrected near VA was 0.00 ± 0.09 and distance corrected intermediate VA was 0.00 ± 0.06 logMAR. Glare testing, pupillometry, contrast sensitivity, motion, and chromatic and achromatic contrast discrimination did not differ significantly between the first and last visit (p>0.05) or when compared to an age-matched control group (p>0.05). CONCLUSIONS: The Physiol FineVision® trifocal IOL provided satisfactory full range of vision and quality of vision parameters 12 months after surgery. Visual acuity and psychophysical tests did not vary significantly between the first and last visit.
Resumo:
PURPOSE: To quantitatively evaluate visual function 12 months after bilateral implantation of the Physiol FineVision® trifocal intraocular lens (IOL) and to compare these results with those obtained in the first postoperative month. METHODS: In this prospective case series, 20 eyes of 10 consecutive patients were included. Monocular and binocular, uncorrected and corrected visual acuities (distance, near, and intermediate) were measured. Metrovision® was used to test contrast sensitivity under static and dynamic conditions, both in photopic and low-mesopic settings. The same software was used for pupillometry and glare evaluation. Motion, achromatic, and chromatic contrast discrimination were tested using 2 innovative psychophysical tests. A complete ophthalmologic examination was performed preoperatively and at 1, 3, 6, and 12 months postoperatively. Psychophysical tests were performed 1 month after surgery and repeated 12 months postoperatively. RESULTS: Final distance uncorrected visual acuity (VA) was 0.00 ± 0.08 and distance corrected VA was 0.00 ± 0.05 logMAR. Distance corrected near VA was 0.00 ± 0.09 and distance corrected intermediate VA was 0.00 ± 0.06 logMAR. Glare testing, pupillometry, contrast sensitivity, motion, and chromatic and achromatic contrast discrimination did not differ significantly between the first and last visit (p>0.05) or when compared to an age-matched control group (p>0.05). CONCLUSIONS: The Physiol FineVision® trifocal IOL provided satisfactory full range of vision and quality of vision parameters 12 months after surgery. Visual acuity and psychophysical tests did not vary significantly between the first and last visit.
Resumo:
Background In recent years new models of intraocular lenses are appearing on the market to reduce requirements for additional optical correction. The purpose of this study is to assess visual outcomes following bilateral cataract surgery and the implant of a FineVision® trifocal intraocular lens (IOL). Methods Prospective, nonrandomized, observational study. Vision was assessed in 44 eyes of 22 patients (mean age 68.4 ± 5.5 years) before and 3 months after surgery. Aberrations were determined using the Topcon KR-1 W wave-front analyzer. LogMAR visual acuity was measured at distance (corrected distance visual acuity, CDVA 4 m), intermediate (distance corrected intermediate visual acuity, DCIVA 60 cm) and near (distance corrected near visual acuity, DCNVA 40 cm). The Pelli-Robson letter chart and the CSV-1000 test were used to estimate contrast sensitivity (CS). Defocus curve testing was performed in photopic and mesopic conditions. Adverse photic phenomena were assessed using the Halo v1.0 program. Results Mean aberration values for a mesopic pupil diameter were: total HOA RMS: 0.41 ± 0.30 μm, coma: 0.32 ± 0.22 μm and spherical aberration: 0.21 ± 0.20 μm. Binocular logMAR measurements were: CDVA −0.05 ± 0.05, DCIVA 0.15 ± 0.10, and DCNVA 0.06 ± 0.10. Mean Pelli-Robson CS was 1.40 ± 0.14 log units. Mean CSV100 CS for the 4 frequencies examined (A: 3 cycles/degree (cpd), B: 6 cpd, C: 12 cpd, D: 18 cpd) were 1.64 ± 0.14, 1.77 ± 0.18, 1.44 ± 0.24 and 0.98 ± 0.24 log units, respectively. Significant differences were observed in defocus curves for photopic and mesopic conditions (p < 0.0001). A mean disturbance index of 0.28 ± 0.22 was obtained. Conclusions Bilateral FineVision IOL implant achieved a full range of adequate vision, satisfactory contrast sensitivity, and a lack of significant adverse photic phenomena. Trial registration Eudract Clinical Trials Registry Number: 2014-003266-2.
Resumo:
Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.
Resumo:
Measurements of area summation for luminance-modulated stimuli are typically confounded by variations in sensitivity across the retina. Recently we conducted a detailed analysis of sensitivity across the visual field (Baldwin et al, 2012) and found it to be well-described by a bilinear “witch’s hat” function: sensitivity declines rapidly over the first 8 cycles or so, more gently thereafter. Here we multiplied luminance-modulated stimuli (4 c/deg gratings and “Swiss cheeses”) by the inverse of the witch’s hat function to compensate for the inhomogeneity. This revealed summation functions that were straight lines (on double log axes) with a slope of -1/4 extending to ≥33 cycles, demonstrating fourth-root summation of contrast over a wider area than has previously been reported for the central retina. Fourth-root summation is typically attributed to probability summation, but recent studies have rejected that interpretation in favour of a noisy energy model that performs local square-law transduction of the signal, adds noise at each location of the target and then sums over signal area. Modelling shows our results to be consistent with a wide field application of such a contrast integrator. We reject a probability summation model, a quadratic model and a matched template model of our results under the assumptions of signal detection theory. We also reject the high threshold theory of contrast detection under the assumption of probability summation over area.
Resumo:
It is widely held that strong relationships exist between housing, economic status, and well being. This is exemplified by widespread housing stock surpluses in many countries which threaten to destabilise numerous aspects related to individuals and community. However, the position of housing demand and supply is not consistent. The Australian position provides a distinct contrast whereby seemingly inexorable housing demand generally remains a critical issue affecting the socio-economic landscape. Underpinned by high levels of immigration, and further buoyed by sustained historically low interest rates, increasing income levels, and increased government assistance for first home buyers, this strong housing demand ensures elements related to housing affordability continue to gain prominence. A significant, but less visible factor impacting housing affordability – particularly new housing development – relates to holding costs. These costs are in many ways “hidden” and cannot always be easily identified. Although it is only one contributor, the nature and extent of its impact requires elucidation. In its simplest form, it commences with a calculation of the interest or opportunity cost of land holding. However, there is significantly more complexity for major new developments - particularly greenfield property development. Preliminary analysis conducted by the author suggests that even small shifts in primary factors impacting holding costs can appreciably affect housing affordability – and notably, to a greater extent than commonly held. Even so, their importance and perceived high level impact can be gauged from the unprecedented level of attention policy makers have given them over recent years. This may be evidenced by the embedding of specific strategies to address burgeoning holding costs (and particularly those cost savings associated with streamlining regulatory assessment) within statutory instruments such as the Queensland Housing Affordability Strategy, and the South East Queensland Regional Plan. However, several key issues require investigation. Firstly, the computation and methodology behind the calculation of holding costs varies widely. In fact, it is not only variable, but in some instances completely ignored. Secondly, some ambiguity exists in terms of the inclusion of various elements of holding costs, thereby affecting the assessment of their relative contribution. Perhaps this may in part be explained by their nature: such costs are not always immediately apparent. Some forms of holding costs are not as visible as the more tangible cost items associated with greenfield development such as regulatory fees, government taxes, acquisition costs, selling fees, commissions and others. Holding costs are also more difficult to evaluate since for the most part they must be ultimately assessed over time in an ever-changing environment, based on their strong relationship with opportunity cost which is in turn dependant, inter alia, upon prevailing inflation and / or interest rates. By extending research in the general area of housing affordability, this thesis seeks to provide a more detailed investigation of those elements related to holding costs, and in so doing determine the size of their impact specifically on the end user. This will involve the development of soundly based economic and econometric models which seek to clarify the componentry impacts of holding costs. Ultimately, there are significant policy implications in relation to the framework used in Australian jurisdictions that promote, retain, or otherwise maximise, the opportunities for affordable housing.
Resumo:
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.
Resumo:
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Resumo:
Purpose: Flickering stimuli increase the metabolic demand of the retina,making it a sensitive perimetric stimulus to the early onset of retinal disease. We determine whether flickering stimuli are a sensitive indicator of vision deficits resulting from to acute, mild systemic hypoxia when compared to standard static perimetry. Methods: Static and flicker visual perimetry were performed in 14 healthy young participants while breathing 12% oxygen (hypoxia) under photopic illumination. The hypoxia visual field data were compared with the field data measured during normoxia. Absolute sensitivities (in dB) were analysed in seven concentric rings at 1°, 3°, 6°, 10°, 15°, 22° and 30° eccentricities as well as mean defect (MD) and pattern defect (PD) were calculated. Preliminary data are reported for mesopic light levels. Results: Under photopic illumination, flicker and static visual field sensitivities at all eccentricities were not significantly different between hypoxia and normoxia conditions. The mean defect and pattern defect were not significantly different for either test between the two oxygenation conditions. Conclusion: Although flicker stimulation increases cellular metabolism, flicker photopic visual field impairment is not detected during mild hypoxia. These findings contrast with electrophysiological flicker tests in young participants that show impairment at photopic illumination during the same levels of mild hypoxia. Potential mechanisms contributing to the difference between the visual fields and electrophysiological flicker tests including variability in perimetric data, neuronal adaptation and vascular autoregulation, are considered. The data have implications for the use of visual perimetry in the detection of ischaemic/hypoxic retinal disorders under photopic and mesopic light levels.
Resumo:
Background: Right-to-left shunting via a patent foramen ovale (PFO) has a recognized association with embolic events in younger patients. The use of agitated saline contrast imaging (ASCi) for detecting atrial shunting is well documented, however optimal technique is not well described. The purpose of this study is to assess the efficacy and safety of ASCi via TTE for assessment of right-to-left atrial communication in a large cohort of patients. Method: A retrospective review was undertaken of 1162 consecutive transthoracic (TTE) ASCi studies, of which 195 had also undergone clinically indicated transesophageal (TEE) echo. ASCi shunt results were compared with color flow imaging (CFI) and the role of provocative maneuvers (PM) assessed. Results: 403 TTE studies (35%) had paradoxical shunting seen during ASCi. Of these, 48% were positive with PM only. There was strong agreement between TTE ASCi and reported TEE findings (99% sensitivity, 85% specificity), with six false positive and two false negative results. In hindsight, the latter were likely due to suboptimal right atrial opacification, and the former due to transpulmonary shunting. TTE CFI was found to be insensitive (22%) for the detection of a PFO compared with TTE ASCi. Conclusions: TTE ASCi is minimally invasive and highly accurate for the detection of right-to-left atrial communication when PM are used. TTE CFI was found to be insensitive for PFO screening. It is recommended that TTE ASCi should be considered the initial diagnostic tool for the detection of PFO in clinical practice. A dedicated protocol should be followed to ensure adequate agitated saline contrast delivery and performance of provocative maneuvers.