973 resultados para CINNAMIC ACID-DERIVATIVES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of different natural antimicrobials on the microbiological and sensorial quality of fresh-cut Cantaloupe melons stored up to 10 days at 5°C was examined. Pieces of melon were washed for 1 min at 5ºC in water (control), vanillin (1000 mg/L and 2000 mg/L) or cinnamic acid (148.16 mg/L and 296.32 mg/L). Other antimicrobial treatments consisted of packaging the pieces of melon with an antimicrobial pad which contained cinnamic acid (148.16 mg/L and 296.32 mg/L). After 10 days of storage, significant differences among antimicrobials treatments and water treatment were found. In water treatment, the psychrotroph load was 3.63 ± 0.09 log cfu g-1 meanwhile on all antimicrobial treatments the values ranged from 3.04 ±0.13 log cfu g-1 to 3.28±0.1 log cfu g-1. Mesophilic growth in the control treatment averaged 6.79±0.06 log cfu g-1 meanwhile on antimicrobial treatments the counts were from 5.15±0.01 log cfu g-1 to 5.30±0.03 log cfu g-1. Total coliform levels were 7.8±0.1 log cfu g-1 when melon was washed in water, followed by washing with cinnamon (296.32 mg/L) at 6.5 log cfu g-1 and for the rest of the treatments were around 5.5 log cfu g-1. The treatments did not display differences among mould and yeast growth after 10 days of storage. The sensorial quality decreased throughout storage. However, at the end of storage, the scores ranged between 6.5 and 7, above the minimum level for marketability (level 5). Sensorial panelist noted a ‘sweet’ taste when vanillin was used as sanitizer. In all antimicrobial treatments, no relation was found between a higher dose and a higher microbial reduction. So, vanillin at 1000 mg/L in water or cinnamic acid at 148.16 mg/L provided in water dip or as a pad inside the trays could be optimal natural sanitizers to substitute the use of chlorine in fresh-cut products as Cantaloupe melon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethanol extracts of powdered genipap (Genipa americana L), umbu (Spondia tuberosa A.) and siriguela (Spondia purpurea L) prepared from separate pulp, seeds and peel were investigated for their (i) antioxidant capacity, which was evaluated by various known methods; (ii) acetylcholinesterase (AChE) inhibitory activity; and (iii) cytotoxic effect on corneal epithelial cells of sheep. The highest values of total phenolic content were obtained with peel and seed extracts. Siriguela and umbu (seeds and peel) extracts displayed the highest antioxidant activities. Lipid peroxidation assays using mimetic biomembranes and mouse liver homogenates indicated that genipap pulp is a promising antioxidant. The investigation of phenols and organic acid contents revealed the presence of quercetin, citric and quinic acids, chlorogenic acid derivatives, among others, in several extracts, with the highest amount found in siriguela seeds. Genipap pulp and siriguela seed ethanol extracts presented an AChE inhibition zone similar to that of the positive control, carbachol. AChE inhibition assay with chlorogenic acid, one of the main constituents of siriguela seeds, revealed that this acid showed activity similar to that of the control physostigmine. These data suggest that these extracts are potentially important antioxidant supplements for the everyday human diet, pharmaceutical and cosmetic industries. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lychnophora salicifolia Mart., which occurs in the Brazilian Cerrado in the states of Bahia and Minas Gerais as well as in the southeast of the state of Goias, is the most widely distributed and also the most polymorphic species of the genus. This plant is popularly known to have anti-inflammatory and analgesic activities. In this work, we have studied the variation in terms of polar metabolites of ninety-three Lychnophora salicifolia Mart, specimens collected from different regions of the Brazilian Cerrado. Identification of the constituents of this mixture was carried out by analysis of the UV spectra and MS data after chromatographic separation. Twenty substances were identified, including chlorogenic acid derivatives, a flavonoid C-glucoside, and other sesquiterpenes. The analytical method was validated, and the reliability and credibility of the results was ensured for the purposes of this study. The concentration range required for analysis of content variability within the analyzed group of specimens was covered with appropriate values of limits of detection and quantitation, as well as satisfactory precision and recovery. A quantitative variability was observed among specimens collected from the same location, but on average they were similar from a chemical viewpoint. In relation to the study involving specimens from different locations, there were both qualitative and quantitative differences among plants collected from different regions of Brazil. Statistical analysis revealed that there is a correlation between geographical localization and polar metabolites profile for specimens collected from different locations. This is evidence that the pattern of metabolites concentration depends on the geographical distribution of the specimens. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzi trans-sialidase (TcTS) inhibitory activity at 1.0 mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260 mu M). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leishmaniasis and Chagas disease are parasitic protozoan infections that affect the poorest population in the world, causing high mortality and morbidity. As a result of highly toxic and long-duration treatments, novel, safe and more efficacious drugs are essential. In this work, the methanol (MeOH) extract from the leaves of Piper malacophyllum (Piperaceae) was fractioned to afford one alkenylphenol, which was characterized as 4-[(3'E)-decenyl]phenol (gibbilimbol B) by spectroscopic methods. Anti-protozoan in vitro assays demonstrated for the first time that Leishmania (L.) infantum chagasi was susceptible to gibbilimbol B. with an in vitro EC50 of 23 mu g/mL against axenic promastigotes and an EC50 of 22 mu g/mL against intracellular amastigotes. Gibbilimbol B was also tested for anti-trypanosomal activity (Trypanosoma cruzi) and showed an EC50 value of 17 mu g/mL against trypomastigotes. To evaluate the cytotoxic parameters, this alkenylphenol was tested in vitro against NCTC cells, showing a CC50 of 59 mu g/mL and absent hemolytic activity at the highest concentration of 75 mu g/mL. Using the fluorescent probe SYTOX Green suggested that the alkenylphenol disrupted the Leishmania plasma membrane upon initial incubation. Further drug design studies aiming at derivatives could be a promising tool for the development of new therapeutic agents for leishmaniasis and Chagas disease. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smallanthus sonchifolius (Poepp.) H. Rob. , Asteraceae, known as yacon, is an herb that is traditionally used for the treatment of diabetes in folk medicine. However, recent studies have demonstrated that this plant has other interesting properties such as anti-microbial and anti-inflammatory actions. Thus, the purpose of this study was to evaluate the topical anti-inflammatory property of different extracts prepared from yacon leaves and analyze the role of different chemical classes in this activity. Three yacon leaf extracts were obtained: aqueous extract, where chlorogenic acid derivatives and sesquiterpene lactones were detected; leaf rinse extract, rich in sesquiterpene lactones; and polar extract, rich in chlorogenic acid derivatives. All the extracts exhibited anti-edematogenic activity in vivo (aqueous extract: 25.9% edema inhibition at 0.50 mg/ear; polar extract: 42.7% inhibition at 0.25 mg/ear; and leaf rinse extract: 44.1% inhibition at 0.25 mg/ear). The leaf rinse extract furnished the best results regarding neutrophil migration inhibition, and NO, TNF-? and PGE2 inhibition. These data indicate that both sesquiterpene lactones and chlorogenic acid derivatives contribute to the anti-inflammatory action, although sesquiterpene lactones seem to have more pronounced effects. In conclusion, yacon leaf extracts, particularly the sesquiterpene lactone-rich extract, has potential use as topical anti-inflammatory agent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.