957 resultados para CELL MEMBRANE MODELS
Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients
Resumo:
Somatostatin receptor subtype 2 (sst(2)) is widely expressed in neuroendocrine tumors and can be visualized immunohistochemically at the cell membrane for diagnostic purposes. Recently, it has been demonstrated in animal sst(2) tumor models in vivo that somatostatin analog treatment was able to induce a complete internalization of the tumor sst(2).
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.
Resumo:
Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.
Resumo:
As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.
Resumo:
Eph receptor tyrosine kinases are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Caveolae are flask-shaped invaginations of the cell membrane; their major structural protein, caveolin-1, has been shown to regulate signaling molecules localized in these micro-domains. The interaction of caveolin-1 with several of these proteins is mediated by the binding of its scaffolding domain to a region containing hydrophobic amino acids within these proteins. The presence of such a motif within the EphB1 kinase domain prompted us to investigate the caveolar localization and regulation of EphB1 by caveolin-1. We report that EphB1 receptors are localized in caveolae, and directly interact with caveolin-1 upon ligand stimulation. This interaction, as well as EphB1-mediated activation of extracellular-signal-regulated kinase (ERK), was abrogated by overexpression of a caveolin-1 mutant lacking a functional scaffolding domain. Interaction between Ephs and caveolin-1 is not restricted to the B-subclass of receptors, since we show that EphA2 also interacts with caveolin-1. Furthermore, we demonstrate that the caveolin-binding motif within the kinase domain of EphB1 is primordial for its correct membrane targeting. Taken together, our findings establish caveolin-1 as an important regulator of downstream signaling and membrane targeting of EphB1.
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.
Resumo:
BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.
Resumo:
A phenomenological transition film evaporation model was introduced to a pore network model with the consideration of pore radius, contact angle, non-isothermal interface temperature, microscale fluid flows and heat and mass transfers. This was achieved by modeling the transition film region of the menisci in each pore throughout the porous transport layer of a half-cell polymer electrolyte membrane (PEM) fuel cell. The model presented in this research is compared with the standard diffusive fuel cell modeling approach to evaporation and shown to surpass the conventional modeling approach in terms of predicting the evaporation rates in porous media. The current diffusive evaporation models used in many fuel cell transport models assumes a constant evaporation rate across the entire liquid-air interface. The transition film model was implemented into the pore network model to address this issue and create a pore size dependency on the evaporation rates. This is accomplished by evaluating the transition film evaporation rates determined by the kinetic model for every pore containing liquid water in the porous transport layer (PTL). The comparison of a transition film and diffusive evaporation model shows an increase in predicted evaporation rates for smaller pore sizes with the transition film model. This is an important parameter when considering the micro-scaled pore sizes seen in the PTL and becomes even more substantial when considering transport in fuel cells containing an MPL, or a large variance in pore size. Experimentation was performed to validate the transition film model by monitoring evaporation rates from a non-zero contact angle water droplet on a heated substrate. The substrate was a glass plate with a hydrophobic coating to reduce wettability. The tests were performed at a constant substrate temperature and relative humidity. The transition film model was able to accurately predict the drop volume as time elapsed. By implementing the transition film model to a pore network model the evaporation rates present in the PTL can be more accurately modeled. This improves the ability of a pore network model to predict the distribution of liquid water and ultimately the level of flooding exhibited in a PTL for various operating conditions.
Resumo:
Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.
Resumo:
B-lymphocyte stimulator (BLyS), a relatively recently recognized member of the tumor necrosis factor ligand family (TNF), is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors, TACI, BCMA, BAFF-R, to regulate B-cell survival, differentiation, and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood. In this study, we examined BLYS gene expression, function, and regulation in B-cell non-Hodgkin lymphoma (NHL-B) cells. Our studies indicate that BLyS is constitutively expressed in aggressive NHL-B cells, including large B-cell lymphoma (LBCL) and mantle cell lymphoma (MCL), playing an important role in the survival and proliferation of malignant B cells. We found that 2 important transcription factors, NF-kappaB and NFAT, are involved in regulating BLyS expression through at least one NF-kappaB and 2 NFAT binding sites in the BLYS promoter. We also provide evidence suggesting that the constitutive activation of NF-kappaB and BLyS in NHL-B cells forms a positive feedback loop associated with lymphoma cell survival and proliferation. Our findings indicate that constitutive NF-kappaB and NFAT activations are crucial transcriptional regulators of the BLyS survival pathway in malignant B cells that could be therapeutic targets in aggressive NHL-B.
Resumo:
In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.
Resumo:
We detect internal water molecules in a membrane-embedded receptor-transducer complex and demonstrate water structure changes during formation of the signaling state. Time-resolved FTIR spectroscopy reveals stimulus-induced repositioning of one or more structurally active water molecules to a significantly more hydrophobic environment in the signaling state of the sensory rhodopsin II (SRII)-transducer (HtrII) complex. These waters, distinct from bound water molecules within the SRII receptor, appear to be in the middle of the transmembrane interface region near the Tyr199(SRII)-Asn74(HtrII) hydrogen bond. We conclude that water potentially plays an important role in the SRII --> HtrII signal transfer mechanism in the membrane's hydrophobic core.
Resumo:
Light-induced electric signals in intact E. coli cells generated by heterologously expressed full-length and C-terminally truncated versions of Anabaena sensory rhodopsin (ASR) demonstrate that the charge movements within the membrane-embedded part of the molecule are stringently controlled by the cytoplasmic domain. In particular, truncation inverts the direction of proton movement during Schiff base deprotonation from outward to cytoplasmic. Truncation also alters faster charge movements that occur before Schiff base deprotonation. Asp(217) as previously shown by FTIR serves as a proton acceptor in the truncated ASR but not in the full-length version, and its mutation to Asn restores the natural outward direction of proton movement. Introduction of a potential negative charge (Ser(86) to Asp) on the cytoplasmic side favors a cytoplasmic direction of proton release from the Schiff base. In contrast, mutation of the counterion Asp(75) to Glu reverses the photocurrent to the outward direction in the truncated pigment, and in both truncated and full-length versions accelerates Schiff base deprotonation more than 10-fold. The communication between the cytoplasmic domain and the membrane-embedded photoactive site of ASR demonstrated here is likely to derive from the receptor's use of a cytoplasmic protein for signal transduction, as has been suggested previously from binding studies.
Resumo:
Cardiolipin (CL) plays a key role in dynamic organization of bacterial and mitochondrial membranes. CL forms membrane domains in bacterial cells, and these domains appear to participate in binding and functional regulation of multi-protein complexes involved in diverse cellular functions including cell division, energy metabolism, and membrane transport. Visualization of CL domains in bacterial cells by the fluorescent dye 10-N-nonyl acridine orange is critically reviewed. Possible mechanisms proposed for CL dynamic localization in bacterial cells are discussed. In the mitochondrial membrane CL is involved in organization of multi-subunit oxidative phosphorylation complexes and in their association into higher order supercomplexes. Evidence suggesting a possible role for CL in concert with ATP synthase oligomers in establishing mitochondrial cristae morphology is presented. Hypotheses on CL-dependent dynamic re-organization of the respiratory chain in response to changes in metabolic states and CL dynamic re-localization in mitochondria during the apoptotic response are briefly addressed.