939 resultados para CELL ADHESION
Resumo:
Les modifications post-transcriptionnelles de l’ARN messager (ARNm), comme l’épissage alternatif, jouent un rôle important dans la régulation du développement embryonnaire, de la fonction cellulaire et de l’immunité. De nouvelles évidences révèlent que l’épissage alternatif serait également impliqué dans la régulation de la maturation et de l’activation des cellules du système hématopoïétique. Le facteur hnRNP L a été identifié comme étant le principal régulateur de l’épissage alternatif du gène codant pour le récepteur CD45 in vitro. Le récepteur CD45 est une tyrosine phosphatase exprimée par toutes les cellules du système hématopoïétique qui contrôle le développement et l’activation des lymphocytes T. Dans un premier temps, nous avons étudié la fonction du facteur hnRNP L dans le développement des lymphocytes T et dans l’épissage de l’ARNm de CD45 in vivo en utilisant des souris dont le gène de hnRNP L a été supprimé spécifiquement dans les cellules T. La délétion de hnRNP L dans les thymocytes résulte en une expression aberrante des différents isoformes de CD45 avec une prédominance de l'isoforme CD45RA qui est généralement absent dans le thymus. Une conséquence de la délétion de hnRNP L est une diminution de la cellularité du thymus causée par un blocage partiel du développement des cellules pré-T au stade DN4. Cette réduction du nombre de cellules dans le thymus n’est pas liée à une hausse de la mort cellulaire. Les thymocytes déficients pour hnRNP L démontrent plutôt une prolifération augmentée comparée aux thymocytes sauvages due à une hyper-activation des kinases Lck, Erk1/2 et Akt. De plus, la délétion de hnRNP L dans le thymus cause une perte des cellules T en périphérie. Les résultats des expériences in vitro suggèrent que cette perte est principalement due à un défaut de migration des thymocytes déficients pour hnRNP L du thymus vers la périphérie en réponse aux chimiokines. L’épissage alternatif de CD45 ne peut expliquer ce phénotype mais l’identification de cibles par RNA-Seq a révélé un rôle de hnRNP L dans la régulation de l’épissage alternatif de facteurs impliqués dans la polymérisation de l’actine. Dans un second temps, nous avons étudié le rôle de hnRNP L dans l’hématopoïèse en utilisant des souris dont la délétion de hnRNP L était spécifique aux cellules hématopoïétiques dans les foies fœtaux et la moelle osseuse. L’ablation de hnRNP L réduit le nombre de cellules progénitrices incluant les cellules progénitrices lymphocytaires (CLPs), myéloïdes (CMPs, GMPs) et mégakaryocytes-érythrocytaires (MEPs) et une perte des cellules hématopoïétiques matures. À l’opposé des cellules progénitrices multipotentes (MPPs) qui sont affectées en absence de hnRNP L, la population de cellules souches hématopoïétiques (HSCs) n’est pas réduite et prolifère plus que les cellules contrôles. Cependant, les HSCs n’exprimant pas hnRNP L sont positives pour l'Annexin V et expriment CD95 ce qui suggère une mort cellulaire prononcée. Comme pour les thymocytes, une analyse par RNA-Seq des foies fœtaux a révélé différents gènes cibles de hnRNP L appartenant aux catégories reliées à la mort cellulaire, la réponse aux dommages à l’ADN et à l’adhésion cellulaire qui peuvent tous expliquer le phénotype des cellules n’exprimant pas le gène hnRNP L. Ces résultats suggèrent que hnRNP L et l’épissage alternatif sont essentiels pour maintenir le potentiel de différenciation des cellules souches hématopoïétiques et leur intégrité fonctionnelle. HnRNP L est aussi crucial pour le développement des cellules T par la régulation de l’épissage de CD45 ainsi que pour leur migration.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine (DCVC) resulted in a >1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) 1b-V-IX receptor complex, GPV1 and integrin alpha(2)beta(1)-These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alphaIIbbeta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPV1 and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine ( DCVC) resulted in a > 1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
Background—Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results—A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions—These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.
Resumo:
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2 h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflammation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90 min daily) for 3 days. and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB(4). TXB(2), IL-1 beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung Vitamins C, E and apocynin reduced the levels of LTB(4) in BAL-cultured cells of the FA and FA/OVA groups, but Increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of intercellular cell adhesion molecule 1 (ICAM-1) In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Glypican-3 (GPC3) is a proteoglycan involved in migration, proliferation and cell survival modulation in several tissues. There are many reports demonstrating a downregulation of GPC3 expression in some human tumors, including mesothelioma, ovarian and breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their in vivo invasive and metastatic capacities together with a higher susceptibility to in vitro apoptosis. Currently, the signaling mechanism of GPC3 is not clear. First, it was speculated that GPC3 regulates the insulin-like growth factor (IGF) signaling system. This hypothesis, however, has been strongly challenged. Recently, several reports indicated that at least in some cell types GPC3 serves as a selective regulator of Wnt signaling. Here we provide new data demonstrating that GPC3 regulates Wnt pathway in the metastatic adenocarcinoma mammary LM3 cell line. We found that GPC3 is able to inhibit canonical Wnt signals involved in cell proliferation and survival, as well as it is able to activate non canonical pathway, which directs cell morphology and migration. This is the first report indicating that breast tumor cell malignant properties can be reverted, at least in part, by GPC3 modulation of Wnt signaling. Our results are consistent with the potential role of GPC3 as a metastasis suppressor.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The observation that mice with a selective ablation of the androgen receptor (AR) in Sertoli cells (SC) (SCARKO mice) display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli) and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin). Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2). It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.
Resumo:
PURPOSE: To evaluate the number and morphology of fibroblasts grown on machined titanium healing abutments treated with an airpowder system. MATERIALS AND METHODS: Twenty-six abutments were assigned to two experimental groups: control (no treatment) and treated (exposed to the Prophy-Jet for 30 seconds). The specimens were incubated for 24 hours with fibroblastic cells in multiwell plates, followed by routine laboratory processing for scanning electron microscope analysis. The specimens were photographed at x 350, and the cell number was counted on an area of approximately 200 um2. RESULTS: No significant differences were found on morphology between the groups (P > 0.05); however, the control group presented a significantly greater amount of cells (71.44 +/- 31.93, mean +/- SD) in comparison with treated group (35.31 +/- 28.14), as indicated by a nonpaired t test (P = 0.001). CONCLUSION: The use of an air-abrasive prophylaxis system on the surface of titanium healing abutments reduced the cells proliferation but did not influence cell morphology.
Resumo:
Root debridement generates a smear layer which contains microorganisms and toxins that could interfere in periodontal healing. For this reason, different substances have been used to remove it and to expose collagen fibers at the tooth surface. Blood element adhesion to demineralized roots and clot stabilization by collagen fibers are extremely important for the success of periodontal surgery. The aim of this study was to evaluate the different patterns of blood element adsorption and adhesion to root surfaces only irrigated with distilled water and after application of a manipulated or an industrialized EDTA gel. Thirty samples were planed, equally divided into three groups and treated with distilled water (control), a manipulated EDTA gel or an industrialized one. Immediately after, samples were exposed to fresh blood and prepared for scanning electron microscopy. Untreated planed dentin presented the best results with blood cells entrapped in a thick web of fibrin. In the manipulated EDTA group, the web of fibrin was thick with sparse blood elements. The worst result was seen with the industrialized EDTA group, in which no blood elements could be seen. Statistical difference was obtained between control and industrialized EDTA groups. Surfaces only irrigated presented the most organized fibrin network and cell entrapment.
Resumo:
The effect of dietary supplementation with 0, 100 and 450 mg of vitamin E (DL-α tocopheryl acetate)/kg of a dry diet on the kinetics of macrophage recruitment and giant cell formation in the pacu, maintained at different stocking densities (5 kg/m3 and 20 kg/m3), was investigated by insertion of round glass coverslips into the subcutaneous connective tissue. After a feeding period of 18 weeks, the coverslips were implanted and later removed for examination at 2, 7 and 15 days post-implantation. Fish fed diets supplemented with 450 mg of vitamin E showed an increase (P<0.05) in the accumulation of macrophages, foreign body giant cells and Langhans type cells. The kinetics of macrophage recruitment and giant cell formation on the glass coverslips appeared to be strongly influenced by vitamin E supplementation, since fish fed a basal diet and held at high stocking densities showed low numbers of adhering cells on the coverslips, and high concentrations of plasma corticosteroids. On the other hand, fish given a diet supplemented with 450 mg of vitamin E did not show a similar difference in plasma cortisol concentrations related to stocking density. The effect of cortisol concentrations on carbohydrate metabolism, analysed by assessment of plasma glycaemia, was not clear. Blood glucose concentrations did not vary substantially with the different treatments examined. These results suggest that vitamin E may contribute to the efficiency of the fish's inflammatory response by increasing macrophage recruitment and giant cell formation in the foreign body granulomatous reaction. Vitamin E appeared to act on the stress response of pacus by preventing a stress-related immunosuppression. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods: Eosinophils were purified using a percoll gradient followed byimmunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results: At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion: Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion. © 2008 Lintomen et al; licensee BioMed Central Ltd.
Resumo:
This study used scanning electron microscopy (SEM) to evaluate the morphology and adhesion of blood components on root surfaces instrumented by curettes, piezoelectric ultrasonic scaler and Er,Cr:YSGG laser. One hundred samples from 25 teeth were divided into 5 groups: 1) Curettes; 2) Piezoelectric ultrasonic scaler; 3) Curettes plus piezoelectric ultrasonic scaler; 4) Er,Cr:YSGG laser; 5) Curettes plus Er,Cr:YSGG laser. Ten samples from each group were used for analysis of root morphology and the other 10 were used for analysis of adhesion of blood components on root surface. The results were analyzed statistically by the Kruskall-Wallis and Mann-Whitney tests with a significance level of 5%. The group treated with curettes showed smoother surfaces when compared to the groups were instrumented with piezoelectric ultrasonic scaler and the Er,Cr:YSGG laser. The surfaces instrumented with piezoelectric ultrasonic scaler and Er,Cr:YSGG laser, alone or in combination with hand scaling and root planing, did not differ significantly (p>0.05) among themselves. No statistically significant differences (p>0.05) among groups were found as to the adhesion of blood components on root surface. Ultrasonic instrumentation and Er,Cr:YSGG irradiation produced rougher root surfaces than the use of curettes, but there were no differences among treatments with respect to the adhesion of blood components.