946 resultados para CDNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cDNA coding for two digestive lysozymes (MdL1 and MdL2) of the Musca domestica housefly was cloned and sequenced. MdL2 is a novel minor lysozyme, whereas MdL1 is the major lysozyme thus far purified from M. domestica midgut. MdL1 and MdL2 were expressed as recombinant proteins in Pichia pastoris, purified and characterized. The lytic activities of MdL1 and MdL2 upon Micrococcus lysodeikticus have an acidic pH optimum (4.8) at low ionic strength (μ = 0.02), which shifts towards an even more acidic value, pH 3.8, at a high ionic strength (μ = 0.2). However, the pH optimum of their activities upon 4-methylumbelliferyl N-acetylchitotrioside (4.9) is not affected by ionic strength. These results suggest that the acidic pH optimum is an intrinsic property of MdL1 and MdL2, whereas pH optimum shifts are an effect of the ionic strength on the negatively charged bacterial wall. MdL2 affinity for bacterial cell wall is lower than that of MdL1. Differences in isoelectric point (pI) indicate that MdL2 (pI = 6.7) is less positively charged than MdL1 (pI = 7.7) at their pH optima, which suggests that electrostatic interactions might be involved in substrate binding. In agreement with that finding, MdL1 and MdL2 affinities for bacterial cell wall decrease as ionic strength increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if in fact it should be m - 1. If the hypothesis is rejected, m is increased and a new test is carried out. The method continues (increasing m) until the hypothesis is accepted. The theoretical core of the method is the full Bayesian significance test, an intuitive Bayesian approach, which needs no model complexity penalization nor positive probabilities for sharp hypotheses. Numerical experiments were based on a cDNA microarray dataset consisting of expression levels of 205 genes belonging to four functional categories, for 10 distinct strains of Saccharomyces cerevisiae. To analyze the method's sensitivity to data dimension, we performed principal components analysis on the original dataset and predicted the number of classes using 2 to 10 principal components. Compared to Mclust (model-based clustering), our method shows more consistent results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks. Results: cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology. Conclusions: We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. This protocol aims at preparing total RNA for gene expression analysis by Northern blots, RT-PCR and real-time quantitative PCR; cDNA isolation by RTPCR; and cDNA library construction. The principle, key advantages, starting plant material, time required for obtaining total RNA and expected results are presented. Materials and methods. This part describes the required materials and the 27 steps necessary for preparing RNA from peel and pulp fruit tissue: preparation of plant tissue powder, preparation of the complete RNA extraction buffer and isolation of RNA from ground banana fruit tissue. Results. Extraction of total RNA by the method described makes it possible to achieve electrophoresis under denatured conditions and in vitro reverse transcription. An example for Northern blot analysis is illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results: The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion: In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background -: Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. Results -: We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. Conclusion -: Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionizing radiation OR) imposes risks to human health and the environment. IR at low doses and low (lose rates has the potency to initiate carcinogenesis. Genotoxic environmental agents such as IR trigger a cascade of signal transduction pathways for cellular protection. In this study, using cDNA microarray technique, we monitored the gene expression profiles in lymphocytes derived from radiation-ex posed individuals (radiation workers). Physical dosimetry records on these patients indicated that the absorbed dose ranged from 0.696 to 39.088 mSv. Gene expression analysis revealed statistically significant transcriptional changes in a total of 78 genes (21 up-regulated and 57 clown-regulated) involved in several biological processes such as ubiquitin cycle (UHRF2 and PIAS1), DNA repair (LIG3, XPA, ERCC5, RAD52, DCLRE1C), cell cycle regulation/proliferation (RHOA, CABLES2, TGFB2, IL16), and stress response (GSTP1, PPP2R5A, DUSP22). Some of the genes that showed altered expression profiles in this study call be used as biomarkers for monitoring the chronic low level exposure in humans. Additionally, alterations in gene expression patterns observed in chronically exposed radiation workers reinforces the need for defining the effective radiation dose that causes immediate genetic damage as well as the long-term effects on genomic instability, including cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Treacher Collins syndrome (TCS) is an autosomal dominant craniofacial disorder caused by frameshift deletions or duplications in the TCOF1 gene. These mutations cause premature termination codons, which are predicted to lead to mRNA degradation by nonsense mediated mRNA decay (NMD). Haploinsufficiency of the gene product (treacle) during embryonic development is the proposed molecular mechanism underlying TCS. However, it is still unknown if TCOF1 expression levels are decreased in postembryonic human cells. Methods: We have estimated TCOF1 transcript levels through real time PCR in mRNA obtained from leucocytes and mesenchymal cells of TCS patients (n = 23) and controls (n = 18). Mutational screening and analysis of NMD were performed by direct sequencing of gDNA and cDNA, respectively. Results: All the 23 patients had typical clinical features of the syndrome and pathogenic mutations were detected in 19 of them. We demonstrated that the expression level of TCOF1 is 18-31% lower in patients than in controls (p < 0.05), even if we exclude the patients in whom we did not detect the pathogenic mutation. We also observed that the mutant allele is usually less abundant than the wild type one in mesenchymal cells. Conclusions: This is the first study to report decreased expression levels of TCOF1 in TCS adult human cells, but it is still unknown if this finding is associated to any phenotype in adulthood. In addition, as we demonstrated that alleles harboring the pathogenic mutations have lower expression, we herein corroborate the current hypothesis of NMD of the mutant transcript as the explanation for diminished levels of TCOF1 expression. Further, considering that TCOF1 deficiency in adult cells could be associated to pathologic clinical findings, it will be important to verify if TCS patients have an impairment in adult stem cell properties, as this can reduce the efficiency of plastic surgery results during rehabilitation of these patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-alcoholic fatty liver disease (NAFLD) encompasses the whole spectrum of steatosis, nonalcoholic steatohepatitis (NASH), and NASH-related cirrhosis (NASH/Cir). Although molecular advances have been made in this field, the pathogenesis of NAFLD is not completely understood. The gene expression profiling associated to NASH/Cir was assessed, in an attempt to better characterize the pathways involved in its etiopathogenesis. Methods: In the first step, we used cDNA microarray to evaluate the gene expression profiles in normal liver (n=3) and NASH/Cir samples (n=3) by GeneSifter (TM) analysis to identify differentially expressed genes and biological pathways. Second, tissue microarray was used to determine immunohistochemical expression of phosphorylated mTOR and 4E-BP1 in 11 normal liver samples, 10 NASH/Cir samples and in 37 samples of cirrhosis of other etiologies to further explore the involvement of the mTOR pathway evidenced by the gene expression analysis. Results: 138 and 106 genes were, respectively, up and down regulated in NASH/Cir in comparison to normal liver. Among the 9 pathways identified as significantly modulated in NASH/Cir, the participation of the mTOR pathway was confirmed, since expression of cytoplasmic and membrane phospho-mTOR were higher in NASH/Cir in comparison to cirrhosis of other etiologies and to normal liver. Conclusions: Recent findings have suggested a role for the cellular ""nutrient sensor"" mTOR in NAFLD and the present study corroborates the participation of this pathway in NASH/Cir. Phospho-mTOR evaluation might be of clinical utility as a potential marker for identification of NASH/Cir in cases mistakenly considered as cryptogenic cirrhosis owing to paucity of clinical data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first quantitative and qualitative analysis of the poly (A)(+) transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Rhipicephalus sanguineus, known as the brown dog tick, is a common ectoparasite of domestic dogs and can be found worldwide. R. sanguineus is recognized as the primary vector of the etiological agent of canine monocytic ehrlichiosis and canine babesiosis. Here we present the first description of a R. sanguineus salivary gland transcriptome by the production and analysis of 2,034 expressed sequence tags (EST) from two cDNA libraries, one consctructed using mRNA from dissected salivary glands from female ticks fed for 3-5 days (early to mid library, RsSGL1) and the another from ticks fed for 5 days (mid library, RsSGL2), identifying 1,024 clusters of related sequences. Results: Based on sequence similarities to nine different databases, we identified transcripts of genes that were further categorized according to function. The category of putative housekeeping genes contained similar to 56% of the sequences and had on average 2.49 ESTs per cluster, the secreted protein category contained 26.6% of the ESTs and had 2.47 EST's/clusters, while 15.3% of the ESTs, mostly singletons, were not classifiable, and were annotated as ""unknown function"". The secreted category included genes that coded for lipocalins, proteases inhibitors, disintegrins, metalloproteases, immunomodulatory and antiinflammatory proteins, as Evasins and Da-p36, as well as basic-tail and 18.3 kDa proteins, cement proteins, mucins, defensins and antimicrobial peptides. Comparison of the abundance of ESTs from similar contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes, such as genes coding for Evasins and a thrombin inhibitor, which were over expressed in the RsSGL1 (early to mid library) versus RsSGL2 (mid library), indicating their role in inhibition of inflammation at the tick feeding site from the very beginning of the blood meal. Conversely, sequences related to cement (64P), which function has been correlated with tick attachment, was largely expressed in the mid library. Conclusions: Our survey provided an insight into the R. sanguineus sialotranscriptome, which can assist the discovery of new targets for anti-tick vaccines, as well as help to identify pharmacologically active proteins.