937 resultados para CARBOHYDRATE-METABOLISM
Resumo:
1. The relation between dietary carbohydrate: lipid ratio and the fuel mixture oxidized during 24 h was investigated in eleven healthy volunteers (six females, and five males) in a respiration chamber. Values of the fuel mixture oxidized were estimated by continuous indirect calorimetry and urinary nitrogen measurements. 2. The subjects, were first given a mixed diet for 7 d and spent the last 24 h of the 7 d period in a respiration chamber for continuous gas-exchange measurement. The fuels oxidized during 2.5 h or moderate exercise were also measured in the respiration chamber. After an interval of 2 weeks from the end of the mixed-diet period, the same subjects were given an isoenergetic high-carbohydrate low-fat diet for 7 d, and the same experimental regimen was repeated. 3. Dietary composition markedly influenced the fuel mixture oxidized during 24 h and this effect was still present 12 h after the last meal in the postabsorptive state. However, the diets had no influence on the substrates oxidized above resting levels during exercise. With both diets, the 24 h energy balance was slightly negative and the energy deficit was covered by lipid oxidation. 4. With the high-carbohydrate low-fat diet, the energy expenditure during sleep was found to be higher than that with the mixed diet. 5. It is concluded that: (a) the composition of the diet did not influence the fuel mixture utilized for moderate exercise, (b) the energy deficit calculated for a 24 h period was compensated by lipid oxidation irrespective of the carbohydrate content of the diet, (c) energy expenditure during sleep was found to be higher with the high-carbohydrate low-fat diet than with the mixed diet.
Resumo:
OBJECTIVE: To assess the effects, on food intake, body weight and body composition, of compliance to advice aiming at increasing the carbohydrate to fat ratio of the everyday diet without imposing voluntary restriction on the amount of food consumed. DESIGN: Eight moderately overweight women (body mass index > 27 kg/m2, relative body fat mass > 30%) received dietary advice during a 2 month period. Additionally, each evening the subjects had to consume a meal artificially enriched with 13C-glucose in order to assess their compliance from the 13CO2 enrichment in expired air. MEASUREMENTS: Dietary intakes, body weight, body composition and individual compliance. RESULTS: The energy derived from fat decreased from 44 +/- 1% to 31 +/- 1% and the proportion of carbohydrate increased from 38 +/- 2% to 50 +/- 1%, whereas the absolute carbohydrate intake remained constant (182 +/- 18 g/d). Energy intake decreased by 1569 +/- 520 kJ/d. There was a net loss of fat mass (1.7 +/- 0.7 kg, P = 0.016) with fat free mass maintenance. Dietary compliance ranged from 20 to 93% (mean: 60 +/- 8%) and was positively correlated to the loss of body fat mass. CONCLUSION: Advice aiming at increasing diet's carbohydrate to fat ratio induces a loss of fat mass with fat-free mass maintenance.
Resumo:
Cessation of traditional management threatens semi-natural grassland diversity through the colonisation or increase of competitive species adapted to nutrient-poor conditions. Regular mowing is one practice that controls their abundance. This study evaluated the ecophysiological mechanisms limiting short- and long-term recovery after mowing for Festuca paniculata, a competitive grass that takes over subalpine grasslands in the Alps following cessation of mowing. We quantified temporal variations in carbon (C) and nitrogen (N) content, starch, fructan and total soluble sugars in leaves, stem bases and roots of F. paniculata during one growth cycle in mown and unmown fields and related them to the dynamics of soil mineral N concentration and soil moisture. Short-term results suggest that the regrowth of F. paniculata following mowing might be N-limited, first because of N dilution by C increments in the plant tissue, and second, due to low soil mineral N and soil moisture at this time of year. However, despite short-term effects of mowing on plant growth, C and N content and concentration at the beginning of the following growing season were not affected. Nevertheless, total biomass accumulation at peak standing biomass was largely reduced compared to unmown fields. Moreover, lower C storage capacity at the end of the growing season impacted C allocation to vegetative reproduction during winter, thereby dramatically limiting the horizontal growth of F. paniculata tussocks in the long term. We conclude that mowing reduces the growth of F. paniculata tussocks through both C and N limitation. Such results will help understanding how plant responses to defoliation regulate competitive interactions within plant communities.
Resumo:
The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.
Resumo:
The metabolic balance method was performed on three men to investigate the fate of large excesses of carbohydrate. Glycogen stores, which were first depleted by diet (3 d, 8.35 +/- 0.27 MJ [1994 +/- 65 kcal] decreasing to 5.70 +/- 1.03 MJ [1361 +/- 247 kcal], 15% protein, 75% fat, 10% carbohydrate) and exercise, were repleted during 7 d carbohydrate overfeeding (11% protein, 3% fat, and 86% carbohydrate) providing 15.25 +/- 1.10 MJ (3642 +/- 263 kcal) on the first day, increasing progressively to 20.64 +/- 1.30 MJ (4930 +/- 311 kcal) on the last day of overfeeding. Glycogen depletion was again accomplished with 2 d of carbohydrate restriction (2.52 MJ/d [602 kcal/d], 85% protein, and 15% fat). Glycogen storage capacity in man is approximately 15 g/kg body weight and can accommodate a gain of approximately 500 g before net lipid synthesis contributes to increasing body fat mass. When the glycogen stores are saturated, massive intakes of carbohydrate are disposed of by high carbohydrate-oxidation rates and substantial de novo lipid synthesis (150 g lipid/d using approximately 475 g CHO/d) without postabsorptive hyperglycemia.
Resumo:
In vivo lipogenesis and thermogenesis were studied for 24 h after ingestion of 500 g of carbohydrate (CHO) in subjects who had consumed either a high-fat, a mixed, or a high-CHO diet during the 3-6 days preceding the test. CHO oxidation and conversion to fat was significantly less in the high-fat diet group (222 +/- 5 g) than in the mixed (300 +/- 13 g) or high-CHO diet (331 +/- 7 g) groups, resulting in a greater glycogen storage in the high-fat (278 +/- 6 g) than in the other two groups (197 +/- 11 and 170 +/- 2 g). Net lipogenesis occurred sooner and lasted longer in the high-CHO group, amounting to 0.8 +/- 0.5, 3.4 +/- 0.6, and 9 +/- 1 g of lipid synthesized in the high-fat, mixed, and high-CHO groups, respectively. The thermic effect of the CHO load was 5.2 +/- 0.5% on the high-fat, 6.5 +/- 0.4% on the mixed diet, and 8.6 +/- 0.4% on the high-CHO diet. Significant relationships were demonstrated between the postabsorptive nonprotein respiratory quotient and net lipogenesis after the CHO load (r = 0.82) and between net lipogenesis and the increase in energy expenditure (r = 0.71). It is concluded that the antecedent diet influences the amount of net lipogenesis and the magnitude of thermogenesis after a large CHO test meal. However, lipogenesis remains too limited even after such large CHO intakes to cause an increase in the body's fat content.
Resumo:
The aim of this work was to quantify the protein, starch and total sugars levels during histodifferentiation and development of somatic embryos of Acca sellowiana Berg. For histological observations, the samples were dehydrated in a battery of ethanol, embedded in historesin and stained with toluidine blue (morphology), coomassie blue (protein bodies) and periodic acid-Schiff (starch). Proteins were extracted using a buffer solution, precipitated using ethanol and quantified using the Bradford reagent. Total sugars were extracted using a methanol-chloroform-water (12:5:3) solution and quantified by a reaction with anthrone at 0.2%. Starch was extracted using a 30% perchloric acid solution and quantified by a reaction with anthrone at 0.2%. During the somatic embryogenesis' in vitro morphogenesis and differentiation processes, the total protein levels decreased and the soluble sugars levels increased during the first 30 days in culture and remained stable until the 120th day. On the other hand, total protein levels increased according to the progression in the developmental stages of the somatic embryos. The levels of total sugars and starch increased in the heart and cotyledonary stages, and decreased in the torpedo and pre-cotyledonary stages. These compounds play a central role in the development of somatic embryos of Acca sellowiana.
Resumo:
Cessation of traditional management threatens semi-natural grassland diversity through the colonisation or increase of competitive species adapted to nutrient-poor conditions. Regular mowing is one practice that controls their abundance. This study evaluated the ecophysiological mechanisms limiting short- and long-term recovery after mowing for Festuca paniculata, a competitive grass that takes over subalpine grasslands in the Alps following cessation of mowing. We quantified temporal variations in carbon (C) and nitrogen (N) content, starch, fructan and total soluble sugars in leaves, stem bases and roots of F. paniculata during one growth cycle in mown and unmown fields and related them to the dynamics of soil mineral N concentration and soil moisture. Short-term results suggest that the regrowth of F. paniculata following mowing might be N-limited, first because of N dilution by C increments in the plant tissue, and second, due to low soil mineral N and soil moisture at this time of year. However, despite short-term effects of mowing on plant growth, C and N content and concentration at the beginning of the following growing season were not affected. Nevertheless, total biomass accumulation at peak standing biomass was largely reduced compared to unmown fields. Moreover, lower C storage capacity at the end of the growing season impacted C allocation to vegetative reproduction during winter, thereby dramatically limiting the horizontal growth of F. paniculata tussocks in the long term. We conclude that mowing reduces the growth of F. paniculata tussocks through both C and N limitation. Such results will help understanding how plant responses to defoliation regulate competitive interactions within plant communities.
Resumo:
The objective of this work was to evaluate the effect of inclusion of dietary glycerol in replacement to starch on the growth and energy metabolism of Nile tilapia juveniles. The experiment was carried out in a completely randomized design with four treatments (0, 5, 10, and 15% purified glycerol) and six replicates. Pelleted, isonitrogenous, and isocaloric diets were provided for 60 days. Growth performance parameters and muscle glucose and protein concentrations were not affected by dietary glycerol levels. The treatment with 15% glycerol presented higher levels of muscle and liver triglycerides. A quadratic effect of treatments on muscle and liver triglyceride concentrations was observed. The treatment with 0% glycerol presented higher hepatic glucose levels than the one with 15%. Treatments did not differ for concentrations of liver protein, as well as of plasma glucose, triglycerides, and protein. Treatments with 10 and 15% glycerol showed higher activity of the glucose-6-phosphate-dehydrogenase enzyme than the treatment with 5%; however, there were no significant differences in the hepatic activities of the malic and glycerol kinase enzymes. A linear positive effect of treatments was observed on the activity of the glycerol kinase enzyme in liver. Levels of glycerol inclusion above 10% in the diet of Nile tilapia juveniles characterize it as a lipogenic nutrient.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
Infection by Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.) hybrids, which indicate alterations in its photosynthetic apparatus. To gain an overview of the physiological status of infected plants, we evaluated chlorophyll a fluorescence and gas exchange assays, correlating the results with leaf metabolic surveys, i.e., photosynthetic pigments and carbohydrate contents. When compared to healthy plants, infected plants showed a reduction in potential quantum efficiency for photochemistry of photosystem (PSII) and alterations in the filling up of the plastoquinone (PQ) pool. They also showed reduction in the CO2 net exchange rates, probably as a consequence of impaired quantum yield. In addition, reductions were found in the contents of photosynthetic leaf pigments and in the ratio chlorophyll a/chlorophyll b (chla/chlb). Carbohydrate content in the leaves was increased as a secondary effect of the ScYLV infection. This article discusses the relation of virus replication and host defense responses with general alterations in the photosynthetic apparatus and in the metabolism of infected plants.
Resumo:
This study examined the effects of pre-exercise carbohydrate availability on the time to exhaustion for moderate and heavy exercise. Seven men participated in a randomized order in two diet and exercise regimens each lasting 3 days with a 1-week interval for washout. The tests were performed at 50% of the difference between the first (LT1) and second (LT2) lactate breakpoint for moderate exercise (below LT2) and at 25% of the difference between the maximal load and LT2 for heavy exercise (above LT2) until exhaustion. Forty-eight hours before each experimental session, subjects performed a 90-min cycling exercise followed by 5-min rest periods and a subsequent 1-min cycling bout at 125% VO2max/1-min rest periods until exhaustion to deplete muscle glycogen. A diet providing 10% (CHOlow) or 65% (CHOmod) energy as carbohydrates was consumed for 2 days until the day of the experimental test. In the exercise below LT2, time to exhaustion did not differ between the CHOmod and the CHOlow diets (57.22 ± 24.24 vs 57.16 ± 25.24 min). In the exercise above LT2, time to exhaustion decreased significantly from 23.16 ± 8.76 min on the CHOmod diet to 18.30 ± 5.86 min on the CHOlow diet (P < 0.05). The rate of carbohydrate oxidation, respiratory exchange ratio and blood lactate concentration were reduced for CHOlow only during exercise above LT2. These results suggest that muscle glycogen depletion followed by a period of a low carbohydrate diet impairs high-intensity exercise performance.
Resumo:
Most of diurnal time is spent in a postprandial state due to successive meal intakes during the day. As long as the meals contain enough fat, a transient increase in triacylglycerolaemia and a change in lipoprotein pattern occurs. The extent and kinetics of such postprandial changes are highly variable and are modulated by numerous factors. This review focuses on factors affecting postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and risk of CHD. Postprandial lipoprotein metabolism is modulated by background dietary pattern as well as meal composition (fat amount and type, carbohydrate, protein, fibre, alcohol) and several lifestyle conditions (physical activity, tobacco use), physiological factors (age, gender, menopausal status) and pathological conditions (obesity, insulin resistance, diabetes mellitus). The roles of many genes have been explored in order to establish the possible implications of their variability in lipid metabolism and CHD risk. The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, A-IV, AN, E, B, C-I and C-III, lipoprotein lipase, hepatic lipase, fatty acid binding and transport proteins, microsomal trigyceride transfer protein and scavenger receptor class B type I. Overall, the variability in postprandial response is important and complex, and the interactions between nutrients or dietary or meal compositions and gene variants need further investigation. The extent of present knowledge and needs for future studies are discussed in light of ongoing developments in nutrigenetics.
Resumo:
Short-chain fatty acids (SCFA) are formed from the fermentation of sugars by intestinal bacteria. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example from lactate and acetate. SCFA play a role in regulating transit of digesta through the intestine, and butyrate formation is thought to be beneficial to health because butyrate decreases the risk of colon cancer. Major butyrate-producing species are among the most abundant present in the colon, including Roseburia and Faecalibacterium spp. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinovorans. Enhancement of intestinal CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease.