959 resultados para C57L Gallstone-Susceptible Mouse, Farnesoid X Receptor, FXR- Null Mice, Gallstone Disease, GW4064


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the role of Th1 (interferon-gamma [IFN-gamma]) and Th2 (interleukin-4 [IL-4] and IL-10) cytokines, an intercellular adhesion molecule (ICAM-1), and a chemokine receptor (CCR5) in the pathogenesis of periapical lesions at different stages of development in knockout mice. For lesion induction, the first molar was opened and inoculated with 4 bacterial strains and left open to the oral environment. After 21 and 42 days, the IFN-gamma, IL-10, ICAM-1, and CCR5 knockout animals presented periapical lesions larger than those of wild-type animals. There was no statistically significant difference between periapical lesions induced in IL-4 knockout and wild-type animals during the periods evaluated. Our findings suggest an important role for IFN-gamma, IL-10, ICAM-1, and CCR5 in the pathogenesis of experimentally induced pulp infection and bone destruction as endogenous suppressor of periapical lesion development, whereas IL-4 appears to present a nonsignificant effect on periapical lesion modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons. the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice. primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from other studies indicating that mitral cells do not play a major role in the convergence and targeting of primary olfactory axons in the olfactory bulb. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in angiotensin II type 1 receptor (AT(1)-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT(1)-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT(1)-R in caveolae, AT(1)-R. caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT(1)-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT(1)-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT(1)-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT(1)-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT(1)-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT(1)-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT(1)-R through the exocytic pathway, but this does not result in AT(1)-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT(1)-R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ragged (Ra) spontaneous mouse mutant is characterised by abnormalities in its coat and cardiovascular system. Four alleles are known and we have previously described mutations in the transcription factor gene Sox18 in the Ra and Ra-J alleles. We report here Sox18 mutations in the remaining two ragged alleles, opossum (Ra-op) and ragged-like (Ragl). The single-base deletions cause a C-terminal frameshift, abolishing transcriptional trans-activation and impairing interaction with the partner protein MEF2C. The nature of these mutations, together with the near-normal phenotype of Sox18-null mice, suggests that the ragged mutant SOX18 proteins act in a dominant-negative fashion. The four ragged mutants represent an allelic series that reveal SOX18 structure-function relationships and implicate related SOX proteins in cardiovascular and hair follicle development. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the search for Leishmania recombinant antigens that can be used as a vaccine against American Cutaneous Leishmaniasis, we identified a Leishmania (Leishmania) amazonensis recombinant protein of 33 kD (Larp33) which is recognized by antibodies and peripheral blood leukocytes (PBL) from subjects vaccinated with Leishvacin ®, Larp33 was expressed in Escherichia coli after cloning of a 2,2 kb Sau3A digested genomic fragment of L. (L.) amazonensis into the pDS56-6 His vector. Immunoblotting analysis indicated that Larp33 corresponds to an approximately 40-kD native protein expressed in promastigotes of L.(L.) amazonensis and L. (Viannia) braziliensis. Northern blots of total RNA also demonstrated that the gene coding for this protein is expressed in promastigotes of the major lineages of Leishmania causing American Cutaneous Leishmaniasis. Larp33 induced partial protection in susceptible mouse strains (BALB/c and C57BL/10) against L. (L.) amazonensis after vaccination using Bacille Calmette-Guerin (BCG) as adjuvant. In vitro stimulation of splenocytes from BALB/c protected mice with Larp33 elicited the secretion of IL-2 and IFN-g, suggesting that a Th1 cell-mediated protective response is associated with the resistance observed in these mice. As revealed by its immunogenic and antigenic properties, this novel recombinant antigen is a suitable candidate to compose a vaccine against cutaneous leishmaniasis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigated the efficacy of hyperbaric oxygen (HBO) therapy, alone or combined with the pentavalent antimonial glucantime on Leishmania amazonensis infection. In parallel, the effect of Brazilian red propolis gel (propain) alone or combined with glucantime on L. amazonensis infection was evaluated. The inhibition of the infection in macrophages treated with glucantime in combination with HBO exposition was greater than that of macrophages treated with glucantime alone or HBO alone. The susceptible mouse strain BALB/c infected in the shaved rump with L. amazonensis treated with glucantime and exposed to HBO showed: time points in the course of the disease in which lesions were smaller than those of mice treated with glucantime alone and revascularization of the skin in the lesion site; interferon-gamma (IFN-g) levels were not elevated in lymph node cells from these animals. Propain alone was not efficient against lesions, although less exudative lesions were observed in animals treated with propain alone or combined with glucantime. These results reveal the potential value of HBO and red propolis in combination with glucantime for treating cutaneous leishmaniasis and encourage further studies on the effect of more aggressive HBO, propolis and glucantime therapies on different mouse models of leishmaniasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A role for the gastro-intestinal tract in controlling bone remodeling is suspected since serum levels of bone remodeling markers are affected rapidly after a meal. Glucose-dependent insulinotropic polypeptide (GIP) represents a suitable candidate in mediating this effect. The aim of the present study was to investigate the effect of total inhibition of GIP signaling on trabecular bone volume, microarchitecture and quality. We used GIP receptor (GIPR) knockout mice and investigated trabecular bone volume and microarchitecture by microCT and histomorphometry. GIPR-deficient animals at 16 weeks of age presented with a significant (20%) increase in trabecular bone mass accompanied by an increase (17%) in trabecular number. In addition, the number of osteoclasts and bone formation rate was significantly reduced and augmented, respectively in these animals when compared with wild-type littermates. These modifications of trabecular bone microarchitecture are linked to a remodeling in the expression pattern of adipokines in the GIPR-deficient mice. On the other hand, despite significant enhancement in bone volume, intrinsic mechanical properties of the bone matrix was reduced as well as the distribution of bone mineral density and the ratio of mature/immature collagen cross-links. Taken together, these results indicate an increase in trabecular bone volume in GIPR KO animals associated with a reduction in bone quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opioid receptors are key players in induction of chronic itch. This could be confirmed using opiate receptor knockout mice experiments and clinical studies on patients with chronic itch. We have induced a dry skin dermatitis as a model for chronic itching on -(MOR) and -(KOR) opioid receptor knockout (KO) mice. MOR KO mice scratched significantly less than wild type (WT). Additionally the epidermal hypertrophy caused by chronic dermatitis and the amount of epidermal nerve endings in MOR KO mice were significantly decreased than in WT mice. KOR KO mice showed similar scratching behavior as MOR KO mice; however the changes were less significant. In addition, we performed a double blind, placebo controlled, cross over study using topically applied opioid receptor antagonist, Naltrexone, on patients with pruritus in atopic dermatitis. The results revealed significant effects of the topical application of Naltrexone in patients with chronic pruritus (45% improvement of pruritus by VAS compared to placebo, n=24), but not in patients with acute pruritus (7%, n=15). These studies establish the clinical relevance of MOR system and the peripheral, epidermal nerve endings in chronic pruritus and warrant further research and therapeutic potential for such research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established H-2D(d)-transgenic (Tg) mice, in which H-2D(d) expression can be extinguished by Cre recombinase-mediated deletion of an essential portion of the transgene (Tg). NK cells adapted to the expression of the H-2D(d) Tg in H-2(b) mice and acquired reactivity to cells lacking H-2D(d), both in vivo and in vitro. H-2D(d)-Tg mice crossed to mice harboring an Mx-Cre Tg resulted in mosaic H-2D(d) expression. That abrogated NK cell reactivity to cells lacking D(d). In D(d) single Tg mice it is the Ly49A+ NK cell subset that reacts to cells lacking D(d), because the inhibitory Ly49A receptor is no longer engaged by its D(d) ligand. In contrast, Ly49A+ NK cells from D(d) x MxCre double Tg mice were unable to react to D(d)-negative cells. These Ly49A+ NK cells retained reactivity to target cells that were completely devoid of MHC class I molecules, suggesting that they were not anergic. Variegated D(d) expression thus impacts specifically missing D(d) but not globally missing class I reactivity by Ly49A+ NK cells. We propose that the absence of D(d) from some host cells results in the acquisition of only partial missing self-reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corticosteroids (aldosterone, cortisol/corticosterone) exert direct functional effects on cardiomyocytes. However, gene networks activated by corticosteroids in cardiomyocytes, as well as the involvement of the mineralocorticoid receptor (MR) vs the glucocorticoid receptor (GR) in these effects, remain largely unknown. Here we characterized the corticosteroid-dependent transcriptome in primary culture of neonatal mouse cardiomyocytes treated with 10(-6) M aldosterone, a concentration predicted to occupy both MR and GR. Serial analysis of gene expression revealed 101 aldosterone-regulated genes. The MR/GR specificity was characterized for one regulated transcript, namely ecto-ADP-ribosyltransferase-3 (Art3). Using cardiomyocytes from GR(null/null) or MR(null/null) mice we demonstrate that in GR(null/null) cardiomyocytes the response is abrogated, but it is fully maintained in MR(null/null) cardiomyocytes. We conclude that Art3 expression is regulated exclusively via the GR. Our study identifies a new set of corticosteroid-regulated genes in cardiomyocytes and demonstrates a new approach to studying the selectivity of MR- vs GR-dependent effects.