962 resultados para Brightness Temperature Difference (BTD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Miocene is the last warm episode in Earth history, and this episode was well recorded in Turkey as shown by plant distribution and inferred numerical temperature values. In this study, Ören-Kultak, Hüssamlar and Karacaagac palynofloras from western Turkey, which are characterized by the thermophilous plants (Engelhardia, Sapotaceae, Cyrillaceae, Avicennia, Arecaceae, Palmae), are described. Age determinations of these palynofloras (middle Burdigalian-Langhian) are strengthened by the mammalian fossil record (MN4-5) and strontium isotope results. Palaeoclimate is humid and warm subtropical during the middle Burdigalian-Langhian time interval in Europe and Turkey. However, temperature difference has been observed between Europe and Turkey during this time interval and it could be explained by the palaeogeographic position of countries. Despite some discrepancies in the climatic values and palaeovegetation groups, warm climatic conditions are recorded, based on the palynofloras, in Turkey (Cayyrhan, Havza, Can, Etili, Gönen, Bigadic, Emet, Kirka and Kestelek, Sabuncubeli, Soma, Tire, Kulogullary, Bascayyr, Hüssamlar and Karacaagac), Greece and elsewhere in Europe throughout the middle Burdigalian-Langhian period. This warming is related to the Middle Miocene Climatic Optimum period. Carbon and oxygen isotope values obtained from tooth enamel of Gomphotherium sp. from Kultak and Hüssamlar indicate similar ecological condition during the Burdigalian-Langhian time. This isotopic result and high MAPDRY value from the Kultak locality are in agreement with ecological interpretation of mammalian fossils. Besides, according to the precipitation values, central and northwestern Anatolian sites provide more rainfall during the Burdigalian-Langhian time interval than the western Anatolian sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of planktonic foraminiferal tests was studied in four drill cores of Upper Quaternary sediments from the zone of influence of the Canary upwelling and in nine sediment cores from the zone of the Benguela upwelling. Paleotemperatures were reconstructed from these data. It was established that under conditions during stadials, interstadials, and interglacials of Quaternary time, the upwelling existed continuously, intensifying and expanding during colder epochs and weakening and contracting in the warmer intervals. During the last stadial (about 18000 yrs ago), relative cooling of sea waters as compared to central regions of the ocean in the zone of the Canary upwelling was not lower than 9°C (4.5°C higher than at present time), and in the zone of the Benguela upwelling it was not lower than 15°C (8.5°C higher than at present time).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passive chambers are used to examine the impacts of summer warming in Antarctica but, so far, impacts occurring outside the growing season, or related to extreme temperatures, have not been reported, despite their potentially large biological significance. In this review, we synthesise and discuss the microclimate impacts of passive warming chambers (closed, ventilated and Open Top Chamber-OTC) commonly used in Antarctic terrestrial habitats, paying special attention to seasonal warming, during the growing season and outside, extreme temperatures and freeze-thaw events. Both temperature increases and decreases were recorded throughout the year. Closed chambers caused earlier spring soil thaw (8-28 days) while OTCs delayed soil thaw (3-13 days). Smaller closed chamber types recorded the largest temperature extremes (up to 20°C higher than ambient) and longest periods (up to 11 h) of above ambient extreme temperatures, and even OTCs had above ambient temperature extremes over up to 5 consecutive hours. The frequency of freeze-thaw events was reduced by ~25%. All chamber types experienced extreme temperature ranges that could negatively affect biological responses, while warming during winter could result in depletion of limited metabolic resources. The effects outside the growing season could be as important in driving biological responses as the mean summer warming. We make suggestions for improving season-specific warming simulations and propose that seasonal and changed temperature patterns achieved under climate manipulations should be recognised explicitly in descriptions of treatment effects.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63 µm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) is associated with abrupt climate change, carbon cycle perturbation, ocean acidification, as well as biogeographic shifts in marine and terrestrial biota that were largely reversed as the climatic transient waned. We report a clear exception to the behavior of the PETM as a reversing climatic transient in the eastern North Atlantic (Deep-Sea Drilling Project Site 401, Bay of Biscay) where the PETM initiates a greatly prolonged environmental change compared to other places on Earth where records exist. The observed environmental perturbation extended well past the d13C recovery phase and up to 650 kyr after the PETM onset according to our extraterrestrial 3He-based age-model. We observe a strong decoupling of planktic foraminiferal d18O and Mg/Ca values during the PETM d13C recovery phase, which in combination with results from helium isotopes and clay mineralogy, suggests that the PETM triggered a hydrologic change in western Europe that increased freshwater flux and the delivery of weathering products to the eastern North Atlantic. This state change persisted long after the carbon-cycle perturbation had stopped. We hypothesize that either long-lived continental drainage patterns were altered by enhanced hydrological cycling induced by the PETM, or alternatively that the climate system in the hinterland area of Site 401 was forced into a new climate state that was not easily reversed in the aftermath of the PETM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of planktonic foraminiferal tests was studied in 15 Upper Quaternary sediment cores from the continental slope of Africa, the Canary and Cape Verde basins, and slopes of the Mid-Atlantic Ridge. In all the cores substantial variations were found in relationship between foraminiferal planktonic species reflecting fluctuations of mean annual temperatures of surface waters. Temperature difference in temperatures between present time and that of the maximum of the stadial of the last continental glaciation glacial stadial (about 18,000 yrs ago) ranges from 8.5°C in the Canary upwelling region to minimum values of 2.0°C in the central part of the ocean, i.e. the southern part of the subtropical gyre. Temperature difference the Holocene optimum and 18,000 yrs ago ranges from 10°C to 3°C. Age estimates are supported by radiocarbon dates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In subarctic Sweden, recent decadal colonization and expansion of aspen (Populus tremula L.) were recorded. Over the past 100 years, aspen became c. 16 times more abundant, mainly as a result of increased sexual regeneration. Moreover, aspen now reach tree-size (>2 m) at the alpine treeline, an ecotone that has been dominated by mountain birch (Betula pubescens ssp. czerepanovii) for at least the past 4000 years. We found that sexual regeneration in aspen probably occurred seven times or more within the last century. Whereas sexual regeneration occurred during moist years following a year with an exceptionally high June-July temperature, asexual regeneration was favored by warm and dry summers. Disturbance to the birch forest by cyclic moth population outbreaks was critical in aspen establishment in the subalpine area. At the treeline, aspen colonization was less determined by these moth outbreaks, and was mainly restricted by summer temperature. If summer warming persists, aspen spread may continue in subarctic Sweden, particularly at the treeline. However, changing disturbance regimes, future herbivore population dynamics and the responses of aspen's competitors birch and pine to a changing climate may result in different outcomes.

Relevância:

100.00% 100.00%

Publicador: