580 resultados para Brains.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El vertiginoso y competitivo panorama actual de los negocios, hace del mercadeo una herramienta muy importante para crecer o incluso sobrevivir. Hay muchas teorías alrededor de como vender un producto, servicio o idea, sin embargo la mayoría de estas consideran sólo las preferencias expresadas de forma consciente y las decisiones racionales. Este trabajo pretende hacer un acercamiento a las teorías de la neurociencia, como la sinergía entre los sentidos del ser humano y de como estas pueden nutrir el ámbito del mercadeo, por ello, se van a estudiar bibliografía relevante en torno a esta área para enmarcar el propósito del estudio. Después de la información obtenida a través de esta revisión, se analizaran dos importantes ejemplos de empresas mundialmente conocidas que han hecho uso de la neurociencia para el desarrollo de su mercadeo. Después de esto se concluye, a través de la información estudiada y analizada, cómo la neurociencia y las teorías multisensoriales pueden afectar el mercadeo de los diferentes productos y servicios. Este documento pretende vislumbrar efectos del mercadeo sobre las preferencias que nuestros cerebros muestran a través de la neurociencia, incluso si no sabemos sobre ellas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta investigación se centra en la Fédération Internationale de Football Association (FIFA) como organización política. Intenta responder dos interrogantes primordiales: 1) ¿cómo la FIFA ha constituido el poder que tiene actualmente y, así, hacerse del monopolio indiscutido del fútbol? Y 2) ¿cómo ha cambiado en el tiempo la política interna de FIFA y su vínculo con la política internacional? Para lograr esto, se realiza un estudio histórico, basado principalmente en documentos, que intenta caracterizar y analizar los cambios de la organización en el tiempo. Se enfatizan las últimas dos presidencias de FIFA, de João Havelange y Joseph Blatter, como casos de estudio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Where does biology end and culture begin? While the human body is now widely accepted as being both biological and cultural, the brain is still considered by archaeologists as being a biological entity that provides the capacity for culture and is subject to no further change after the evolution of Homo sapiens. This article reviews recent research that suggests that the brain has continued to evolve at an increasing rate in recent times under the influence Of culturally created environments and that both the anatomy and function of individual brains can be manipulated by cultural behaviour. It describes an experiment in which one of us successfully changed his own brain in response to his cultural activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apolipoprotein E4 (apoE4) genotype is associated with an increased risk for Alzheimer's disease (AD). This is thought to be in part attributable to an impact of apoE genotype on the processing of the transmembrane amyloid precursor protein (APP) thereby contributing to amyloid beta peptide formation in apoE4 carriers, which is a primary patho-physiological feature of AD. As apoE and alphato-copherol (alpha-toc) have been shown to modulate membrane bilayer properties and hippocampal gene expression, we studied the effect of apoE genotype on APP metabolism and cell cycle regulation in response to dietary a-toc. ApoE3 and apoE4 transgenic mice were fed a diet low (VE) or high (+VE) in vitamin E (3 and 235 mg alpha-toe/kg diet, respectively) for 12 weeks. Cholesterol levels and membrane fluidity were not different in synaptosomal plasma membranes isolated from brains of apoE3 and apoE4 mice (-VE and +VE). Non-amyloidogenic alpha-secretase mRNA concentration and activity were significantly higher in brains of apoE3 relative to apoE4 mice irrespective of the dietary a-toe supply, while amyloidogenic beta-secretase and gamma-secretase remained unchanged. Relative mRNA concentration of cell cycle related proteins were modulated differentially by dietary a-toc supplementation in apoE3 and apoE4 mice, suggesting genotype-dependent signalling effects on cell cycle regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains' responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In over forty years of research robots have made very little progress still largely confined to industrial manufacture and cute toys, yet in the same period computing has followed Moores Law where the capacity double roughly every two years. So why is there no Moores Law for robots? Two areas stand out as worthy of research to speedup progress. The first is to get a greater understanding of how human and animal brains control movement, the second to build a new generation of robots that have greater haptic sense, that is a better ability to adapt to the environment as it is encountered. A remarkable property of the cognitive-motor system in humans and animals is that it is slow. Recognising an object may take 250 mS, a reaction time of 150 mS is considered fast. Yet despite this slow system we are well designed to allow contact with the world in a variety of ways. We can anticipate an encounter, use the change of force as a means of communication and ignore sensory cues when they are not relevant. A better understanding of these process has allowed us to build haptic interfaces to mimic the interaction. Emerging from this understanding are new ways to control the contact between robots, the user and the environment. Rehabilitation robotics has all the elements in the subject to not only enable and change the lives of people with disabilities, but also to facilitate revolution change in classic robotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our eyes are input sensors which Provide our brains with streams of visual data. They have evolved to be extremely efficient, and they will constantly dart to-and-fro to rapidly build up a picture of the salient entities in a viewed scene. These actions are almost subconscious. However, they can provide telling signs of how the brain is decoding the visuals and call indicate emotional responses, prior to the viewer becoming aware of them. In this paper we discuss a method of tracking a user's eye movements, and Use these to calculate their gaze within an immersive virtual environment. We investigate how these gaze patterns can be captured and used to identify viewed virtual objects, and discuss how this can be used as a, natural method of interacting with the Virtual Environment. We describe a flexible tool that has been developed to achieve this, and detail initial validating applications that prove the concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer's disease is more frequent following an ischemic or hypoxic episode, with levels of beta-amyloid peptides elevated in brains from patients. Similar increases are found after experimental ischemia in animals. It is possible that increased beta-amyloid deposition arises from alterations in amyloid precursor protein (APP) metabolism, indeed, we have shown that exposing cells of neuronal origin to chronic hypoxia decreased the secretion of soluble APP (sAPPalpha) derived by action of alpha-secretase on APP, coinciding with a decrease in protein levels of ADAM10, a disintegrin metalloprotease which is thought to be the major alpha-secretase. In the current study, we extended those observations to determine whether the expression of ADAM10 and another putative alpha-secretase, TACE, as well as the beta-secretase, BACE1 were regulated by chronic hypoxia at the level of protein and mRNA. Using Western blotting and RT-PCR, we demonstrate that after 48 h chronic hypoxia, such that sAPPalpha secretion is decreased by over 50%, protein levels of ADAM10 and TACE and by approximately 60% and 40% respectively with no significant decrease in BACE1 levels. In contrast, no change in the expression of the mRNA for these proteins could be detected. Thus, we conclude that under CH the level of the putative alpha-secretases, ADAM10 and TACE are regulated by post-translational mechanisms, most probably proteolysis, rather than at the level of transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perception of our own bodies is based on integration of visual and tactile inputs, notably by neurons in the brain’s parietal lobes. Here we report a behavioural consequence of this integration process. Simply viewing the arm can speed up reactions to an invisible tactile stimulus on the arm. We observed this visual enhancement effect only when a tactile task required spatial computation within a topographic map of the body surface and the judgements made were close to the limits of performance. This effect of viewing the body surface was absent or reversed in tasks that either did not require a spatial computation or in which judgements were well above performance limits. We consider possible mechanisms by which vision may influence tactile processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings: We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance: These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider the structure of dynamically evolving networks modelling information and activity moving across a large set of vertices. We adopt the communicability concept that generalizes that of centrality which is defined for static networks. We define the primary network structure within the whole as comprising of the most influential vertices (both as senders and receivers of dynamically sequenced activity). We present a methodology based on successive vertex knockouts, up to a very small fraction of the whole primary network,that can characterize the nature of the primary network as being either relatively robust and lattice-like (with redundancies built in) or relatively fragile and tree-like (with sensitivities and few redundancies). We apply these ideas to the analysis of evolving networks derived from fMRI scans of resting human brains. We show that the estimation of performance parameters via the structure tests of the corresponding primary networks is subject to less variability than that observed across a very large population of such scans. Hence the differences within the population are significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Depression is a heterogeneous mental illness. Neurostimulation treatments, by targeting specific nodes within the brain’s emotion-regulation network, may be useful both as therapies and as probes for identifying clinically relevant depression subtypes. Methods Here, we applied 20 sessions of magnetic resonance imaging-guided repetitive transcranial magnetic stimulation (rTMS) to the dorsomedial prefrontal cortex in 47 unipolar or bipolar patients with a medication-resistant major depressive episode. Results Treatment response was strongly bimodal, with individual patients showing either minimal or marked improvement. Compared with responders, nonresponders showed markedly higher baseline anhedonia symptomatology (including pessimism, loss of pleasure, and loss of interest in previously enjoyed activities) on item-by-item examination of Beck Depression Inventory-II and Quick Inventory of Depressive Symptomatology ratings. Congruently, on baseline functional magnetic resonance imaging, nonresponders showed significantly lower connectivity through a classical reward pathway comprising ventral tegmental area, striatum, and a region in ventromedial prefrontal cortex. Responders and nonresponders also showed opposite patterns of hemispheric lateralization in the connectivity of dorsomedial and dorsolateral regions to this same ventromedial region. Conclusions The results suggest distinct depression subtypes, one with preserved hedonic function and responsive to dorsomedial rTMS and another with disrupted hedonic function, abnormally lateralized connectivity through ventromedial prefrontal cortex, and unresponsive to dorsomedial rTMS. Future research directly comparing the effects of rTMS at different targets, guided by neuroimaging and clinical presentation, may clarify whether hedonia/reward circuit integrity is a reliable marker for optimizing rTMS target selection.