893 resultados para Brain Connectivity Networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new azide bridged copper(II) coordination polymer compounds, Cu-7(N-3)(14)(C3H10N2)(C4H13N3)]n (I) and Cu-7(N-3)(14)(C3H10N2)(C5H15N3)(2)](n) (II) where C3H10N2 = 1,2-diaminopropane (1,2-DAP); C4H13N3 = di-ethylenetriamine (DETA); C5H15N3 = N-2-aminoethyl-1,3-propanediamine (AEDAP)] were prepared by employing a room temperature diffusion technique involving three layers. Single crystal studies reveal that both compounds I and II, have similar connectivity forming Cu7 clusters through end-on (EO) bonding of the azide. The Cu-7 clusters are connected through end-to-end (EE) connectivity of the azides forming three-dimensional structures. Magnetic studies confirmed the ferromagnetic interactions within the Cu-7 units and revealed the occurrence of concomitant ferro- and antiferro-magnetic interactions between these clusters. As a result I behaves as a weak-ferromagnet with T-C = 10 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Node placement plays a significant role in the effective and successful deployment of Wireless Sensor Networks (WSNs), i.e., meeting design goals such as cost effectiveness, coverage, connectivity, lifetime and data latency. In this paper, we propose a new strategy to assist in the placement of Relay Nodes (RNs) for a WSN monitoring underground tunnel infrastructure. By applying for the first time an accurate empirical mean path loss propagation model along with a well fitted fading distribution model specifically defined for the tunnel environment, we address the RN placement problem with guaranteed levels of radio link performance. The simulation results show that the choice of appropriate path loss model and fading distribution model for a typical environment is vital in the determination of the number and the positions of RNs. Furthermore, we adapt a two-tier clustering multi-hop framework in which the first tier of the RN placement is modelled as the minimum set cover problem, and the second tier placement is solved using the search-and-find algorithm. The implementation of the proposed scheme is evaluated by simulation, and it lays the foundations for further work in WSN planning for underground tunnel applications. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How can networking affect the turnout in an election? We present a simple model to explain turnout as a result of a dynamic process of formation of the intention to vote within Erdös-Renyi random networks. Citizens have fixed preferences for one of two parties and are embedded in a given social network. They decide whether or not to vote on the basis of the attitude of their immediate contacts. They may simply follow the behavior of the majority (followers) or make an adaptive local calculus of voting (Downsian behavior). So they either have the intention of voting when the majority of their neighbors are willing to vote too, or they vote when they perceive in their social neighborhood that elections are "close". We study the long run average turnout, interpreted as the actual turnout observed in an election. Depending on the combination of values of the two key parameters, the average connectivity and the probability of behaving as a follower or in a Downsian fashion, the system exhibits monostability (zero turnout), bistability (zero turnout and either moderate or high turnout) or tristability (zero, moderate and high turnout). This means, in particular, that for a wide range of values of both parameters, we obtain realistic turnout rates, i.e. between 50% and 90%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of complex networks has attracted the attention of the scientific community for many obvious reasons. A vast number of systems, from the brain to ecosystems, power grid, and the Internet, can be represented as large complex networks, i.e, assemblies of many interacting components with nontrivial topological properties. The link between these components can describe a global behaviour such as the Internet traffic, electricity supply service, market trend, etc. One of the most relevant topological feature of graphs representing these complex systems is community structure which aims to identify the modules and, possibly, their hierarchical organization, by only using the information encoded in the graph topology. Deciphering network community structure is not only important in order to characterize the graph topologically, but gives some information both on the formation of the network and on its functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The insula is a mammalian cortical structure that has been implicated in a wide range of low- and high-level functions governing one’s sensory, emotional, and cognitive experiences. One particular role of this region is considered to be processing of olfactory stimuli. The ability to detect and evaluate odors has significant effects on an organism’s eating behavior and survival and, in case of humans, on complex decision making. Despite such importance of this function, the mechanism in which olfactory information is processed in the insula has not been thoroughly studied. Moreover, due to the structure’s close spatial relationship with the neighboring claustrum, it is not entirely clear whether the connectivity and olfactory functions attributed to the insula are truly those of the insula, rather than of the claustrum. My graduate work, consisting of two studies, seeks to help fill these gaps. In the first, the structural connectivity patterns of the insula and the claustrum in a non-human primate brain is assayed using an ultra-high-quality diffusion magnetic resonance image, and the results suggest dissociation of connectivity — and hence function — between the two structures. In the second study, a functional neuroimaging experiment investigates the insular activity during odor evaluation tasks in humans, and uncovers a potential spatial organization within the anterior portion of the insula for processing different aspects of odor characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barneko ikerkuntza-txostena

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the role of connectivity on the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination relative to that of an isostatic network $\delta z$; a floppy network has $\delta z<0$, while a stiff network has $\delta z>0$. Under the influence of an externally applied load we observe that the response of both floppy and rigid network are controlled by the same critical point, corresponding to the onset of rigidity. We use numerical simulations to compute the exponents which characterize the shear modulus, the amplitude of non-affine displacements, and the network stiffening as a function of $\delta z$, derive these theoretically and make predictions for the mechanical response of glasses and fibrous networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we firstly give the nature of 'hypersausages', study its structure and training of the network, then discuss the nature of it by way of experimenting with ORL face database, and finally, verify its unsurpassable advantages compared with other means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the new topological indices A(x1)-A(x3) suggested in our laboratory and molecular connectivity indices have been applied to multivariate analysis in structure-property studies. The topological indices of twenty asymmetrical phosphono bisazo derivatives of chromotropic acid have been calculated. The structure-property relationships between colour reagents and their colour reactions with ytterbium have been studied by A(x1)-A(x3) indices and molecular connectivity indices with satisfactory results. Multiple regression analysis and neural networks were employed simultaneously in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I wish to propose a quite speculative new version of the grandmother cell theory to explain how the brain, or parts of it, may work. In particular, I discuss how the visual system may learn to recognize 3D objects. The model would apply directly to the cortical cells involved in visual face recognition. I will also outline the relation of our theory to existing models of the cerebellum and of motor control. Specific biophysical mechanisms can be readily suggested as part of a basic type of neural circuitry that can learn to approximate multidimensional input-output mappings from sets of examples and that is expected to be replicated in different regions of the brain and across modalities. The main points of the theory are: -the brain uses modules for multivariate function approximation as basic components of several of its information processing subsystems. -these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b). -HyperBF networks can be implemented in terms of biologically plausible mechanisms and circuitry. The theory predicts a specific type of population coding that represents an extension of schemes such as look-up tables. I will conclude with some speculations about the trade-off between memory and computation and the evolution of intelligence.