855 resultados para Bone-mineral Density
Resumo:
This study intended to compare bone density and architecture in three groups of women: young women with anorexia nervosa (AN), an age-matched control group of young women, and healthy late postmenopausal women. Three-dimensional peripheral quantitative high resolution computed-tomography (HR-pQCT) at the ultradistal radius, a technology providing measures of cortical and trabecular bone density and microarchitecture, was performed in the three cohorts. Thirty-six women with AN aged 18-30years (mean duration of AN: 5.8years), 83 healthy late postmenopausal women aged 70-81 as well as 30 age-matched healthy young women were assessed. The overall cortical and trabecular bone density (D100), the absolute thickness of the cortical bone (CTh), and the absolute number of trabecules per area (TbN) were significantly lower in AN patients compared with healthy young women. The absolute number of trabecules per area (TbN) in AN and postmenopausal women was similar, but significantly lower than in healthy young women. The comparison between AN patients and post-menopausal women is of interest because the latter reach bone peak mass around the middle of the fertile age span whereas the former usually lose bone before reaching optimal bone density and structure. This study shows that bone mineral density and bone compacta thickness in AN are lower than those in controls but still higher than those in postmenopause. Bone compacta density in AN is similar as in controls. However, bone inner structure in AN is degraded to a similar extent as in postmenopause. This last finding is particularly troubling.
Resumo:
Bone is a physiologically dynamic tissue being constantly regenerated throughout life as a consequence of bone turnover by bone-resorbing osteoclasts and bone-forming osteoblasts. In certain bone diseases, such as osteoporosis, the imbalance in bone turnover leads to bone loss and increased fracture risk. Measurement of bone mineral density (BMD) predicts the risk of fracture, but also biochemical markers of bone metabolism have been suggested to be suitable for prediction of fractures and monitoring the efficacy of antiresorptive treatment. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is an enzyme released from osteoclasts into the circulation, from where it can be detected kinetically or immunologically. Conventional assays for serum total TRACP were spectrophotometric and suffered from interference by other acid phosphatases and non-osteoclastic TRACP 5a isoform. Our aim was to develop novel immunoassays for osteoclastic TRACP 5b. Serum TRACP 5b levels were elevated in individuals with high bone turnover, such as children, postmenopausal women, patients with osteoporosis, Paget’s disease and breast cancer patients with bone metastases. As expected, hormone replacement therapy (HRT) in postmenopausal women decreased the levels of serum TRACP 5b. Surprisingly, the highest TRACP 5b levels were observed in individuals with rare autosomal dominant osteopetrosis type II (ADO2), which is characterized by high BMD and fracture risk with simultaneously elevated levels of deficient osteoclasts. In ADO2 patients, elevated levels of serum TRACP 5b were associated with high fracture frequency. It is likely that serum TRACP 5b reflects the number of inactive osteoclasts in ADO2. Similar results supporting the hypothesis that TRACP 5b would reflect the number of osteoclasts instead of their activity were observed with cultured osteoclasts and in animal models. Novel TRACP 5b immunoassays may prove to be of value either as independent or combinatory tools with other bone metabolic markers and BMD measurements in clinical practice and bone research.
Resumo:
The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.
Resumo:
CONTEXT: Type 2 diabetes is associated with increased fracture risk but paradoxically greater bone mineral density (BMD). Trabecular bone score (TBS) is derived from the texture of the spine dual x-ray absorptiometry (DXA) image and is related to bone microarchitecture and fracture risk, providing information independent of BMD. OBJECTIVE: This study evaluated the ability of lumbar spine TBS to account for increased fracture risk in diabetes. DESIGN AND SETTING: We performed a retrospective cohort study using BMD results from a large clinical registry for the province of Manitoba, Canada. Patients: We included 29,407 women 50 years old and older with baseline DXA examinations, among whom 2356 had diagnosed diabetes. MAIN OUTCOME MEASURES: Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Health service records were assessed for incident nontraumatic major osteoporotic fractures (mean follow-up 4.7 years). RESULTS: Diabetes was associated with higher BMD at all sites but lower lumbar spine TBS in unadjusted and adjusted models (all P < .001). The adjusted odds ratio (aOR) for a measurement in the lowest vs the highest tertile was less than 1 for BMD (all P < .001) but was increased for lumbar spine TBS [aOR 2.61, 95% confidence interval (CI) 2.30-2.97]. Major osteoporotic fractures were identified in 175 women (7.4%) with and 1493 (5.5%) without diabetes (P < .001). Lumbar spine TBS was a BMD-independent predictor of fracture and predicted fractures in those with diabetes (adjusted hazard ratio 1.27, 95% CI 1.10-1.46) and without diabetes (hazard ratio 1.31, 95% CI 1.24-1.38). The effect of diabetes on fracture was reduced when lumbar spine TBS was added to a prediction model but was paradoxically increased from adding BMD measurements. CONCLUSIONS: Lumbar spine TBS predicts osteoporotic fractures in those with diabetes, and captures a larger portion of the diabetes-associated fracture risk than BMD.
Resumo:
Aims: Inflammatory bowel diseases (IBD) appearing during childhood and adolescence compromise peak bone mass acquisition and increase fracture risk. The structural determinants of bone fragility in IBD however remain unknown. Methods: We investigated volumetric bone mineral density (vBMD), trabecular and cortical bone microstructure at distal radius and tibia by high-resolution pQCT (XtremeCT, Scanco, Switzerland), aBMD at distal radius, hip and spine and vertebral fracture assessment (VFA) by DXA in 107 young patients (mean age 22.8 yrs, range 12.2-33.7 yrs; 62 females and 45 males) with Crohn's disease (n=75), ulcerative colitis (n=25), undetermined colitis (n=2), and no definitive diagnosis (n=5), and in 389 healthy young individuals. Results: Mean disease duration was 6.1 yrs, 89/107 IBD patients received corticosteroids, 83 other immunomodulators, and 59 vitamin D. Clinical fractures were reported by 38 patients (mean age at 1st fracture, 12.6 yrs), the vast majority of the forearm, arm or hand; 5 had vertebral crush fractures (Grade 1 or 2) and 11 had multiple fractures. As compared to healthy controls (matched 2:1 for age, sex, height and fracture history), the 102 patients with established IBD had similar weight but significantly lower aBMD at all sites, lower trabecular (Tb) BV/TV and number, and greater Tb separation and inhomogeneous Tb distribution (1/SD TbN) at both distal radius and tibia, lower tibia cortical thickness (CTh), but no differences in cortical vBMD nor bone perimeter. Among IBD's, aBMD was not associated with fractures (by logistic regression adjusted for age, age square, sex, height, weight and protein intake). However, radius and tibia Tb BV/TV, thickness and SD 1/TbN, as well as radius Tb separation and perimeter, were significantly associated with fracture risk (fully adjusted as above), whereas cortical vBMD and CTh were not. After adjustment for aBMD at radius, respectively at femur neck, radius SD 1/TbN and tibia BV/TV, TbTh and perimeter remained independently associated with fracture risk. Conclusions: Young subjects with IBD have low bone mass and poor bone microarchitecture compared to healthy controls. Alterations of bone microarchitecture, particularly in the trabecular bone compartment, are specifically associated with increased fracture risk during growth.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.
Resumo:
Objective: To analyse whether bone mineral density (BMD) assessment is required in postmenopausal women presenting with low trauma vertebral fracture. Methods: Women with vertebral fracture diagnosed over a 10 year period were recruited from our database. The following were excluded: (a) patients with high energy trauma; (b) patients with malignancies; (c) patients with a metabolic bone disease other than osteoporosis. All postmenopausal women were included in whom BMD had been evaluated at both the lumbar spine and femoral neck by dual energy x ray absorptiometry during the six months after the diagnosis. Patients with a potential cause of osteoporosis other than age and menopause were not considered. A total of 215 patients were identified. Results: The mean (SD) age of the patients was 65.9 (6.9) years. BMD at the lumbar spine was 0.725 (0.128) g/cm2 and the T score was ¿2.94 (1.22); BMD at the femoral neck was 0.598 (0.095) g/cm2 and the T score was ¿2.22 (0.89). The BMD of the patients was significantly lower than that of the general population at both the lumbar spine and femoral neck. When the lowest value of the two analysed zones was considered, six patients (3%) showed a normal BMD, 51 (23.5%) osteopenia, and 158 (73.5%) osteoporosis. The prevalence of osteoporosis at the femoral neck increased with age; it was 25% in patients under 60, 35% in patients aged 60¿70, and 60% in patients over 70. Conclusion: These results indicate that bone densitometry is not required in postmenopausal women with clinically diagnosed vertebral fractures if it is performed only to confirm the existence of a low BMD.
Resumo:
Criteria to decide which patients with rheumatoid arthritis (RA) should be examined by dual energy x ray absorptiometry (DXA) are currently not available. The rheumatologists from Amsterdam have proposed preliminary criteria based on clinical risk factors (age, disease activity, and functional status). These criteria are preliminary and not widely accepted but might be helpful in practice. The value of the proposal in a group of Spanish postmenopausal women with RA is analysed. METHODS DXA (lumbar spine and femoral neck) was performed in 128 patients recruited from a clinical setting, and the proposed criteria were applied. T and Z scores were established for a Spanish reference population. RESULTS The mean (SD) age of the patients was 61.3 (10.7) and mean duration of the postmenopausal period 14.5 (10.1) years. Mean duration of RA was 13.7 (7.7) years. Mean C reactive protein was 22 (21) mg/l; mean erythrocyte sedimentation rate 26 (18) mm/1st h; and mean Health Assessment Questionnaire score 1.25 (0.79). Ninety (70%) patients fulfilled the proposed criteria. Their sensitivity for the diagnosis of osteoporosis (T score ¿¿2.5 SD) was 86% and their specificity, 43%. Positive predictive value was 54% and negative predictive value, 79%. CONCLUSIONS The proposed criteria seem a good screening method for the selection of those patients with RA whose bone mineral density should be assessed as the sensitivity and negative predictive value are acceptable.
Resumo:
Aims: We performed a randomised controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during a full schoolyear influences bone mineral content (BMC) and whether there are differences in response for boys and girls before and during puberty. Methods: Twenty-eight 1st and 5th grade classes were cluster randomised to an intervention (INT, 16 classes, n=297) and control (CON; 12 classes, n=205) group. The intervention consisted of a multi-component PA intervention including daily physical education during a full school year. Each lesson was predetermined, included about ten minutes of jumping or strength training exercises of various intensity and was the same for all children. Measurements included anthropometry (height and weight), tanner stages (by self-assessment), PA (by accelerometry) and BMC for total body, femoral neck, total hip and lumbar spine using dualenergy X-ray absorptiometry (DXA). Bone parameters were normalized for gender and tanner stage (pre- vs. puberty). Analyses were performed by a regression model adjusted for gender, baseline height, baseline weight, baseline PA, post-intervention tanner stage, baseline BMC, and cluster. Researchers were blinded to group allocation. Children in the control group did not know about the intervention arm. Results: 217 (57%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 9.0±2.1 and 11.2±0.6 years, respectively. 47/114 girls and 68/103 boys were prepubertal at the end of the intervention. Compared to CON, children in INT showed statistically significant increases in BMC of total body (adjusted z-score differences: 0.123; 95%>CI 0.035 to 0.212), femoral neck (0.155; 95%>CI 0.007 to 0.302), and lumbar spine (0.127; 95%>CI 0.026 to 0.228). Importantly, there was no gender*group, but a tanner*group interaction consistently favoring prepubertal children. Conclusions: Our findings show that a general, but stringent school-based PA intervention can improve BMC in elementary school children. Pubertal stage, but not gender seems to determine bone sensitivity to physical activity loading.
Resumo:
Age-related changes in lumbar vertebral microarchitecture are evaluated, as assessed by trabecular bone score (TBS), in a cohort of 5,942 French women. The magnitude of TBS decline between 45 and 85 years of age is piecewise linear in the spine and averaged 14.5 %. TBS decline rate increases after 65 years by 50 %. INTRODUCTION: This study aimed to evaluate age-related changes in lumbar vertebral microarchitecture, as assessed by TBS, in a cohort of French women aged 45-85 years. METHODS: An all-comers cohort of French Caucasian women was selected from two clinical centers. Data obtained from these centers were cross-calibrated for TBS and bone mineral density (BMD). BMD and TBS were evaluated at L1-L4 and for all lumbar vertebrae combined using GE-Lunar Prodigy densitometer images. Weight, height, and body mass index (BMI) also were determined. To validate our all-comers cohort, the BMD normative data of our cohort and French Prodigy data were compared. RESULTS: A cohort of 5,942 French women aged 45 to 85 years was created. Dual-energy X-ray absorptiometry normative data obtained for BMD from this cohort were not significantly different from French prodigy normative data (p = 0.15). TBS values at L1-L4 were poorly correlated with BMI (r = -0.17) and weight (r = -0.14) and not correlated with height. TBS values obtained for all lumbar vertebra combined (L1, L2, L3, L4) decreased with age. The magnitude of TBS decline at L1-L4 between 45 and 85 years of age was piecewise linear in the spine and averaged 14.5 %, but this rate increased after 65 years by 50 %. Similar results were obtained for other region of interest in the lumbar spine. As opposed to BMD, TBS was not affected by spinal osteoarthrosis. CONCLUSION: The age-specific reference curve for TBS generated here could therefore be used to help clinicians to improve osteoporosis patient management and to monitor microarchitectural changes related to treatment or other diseases in routine clinical practice.
Resumo:
OBJECTIVE: To evaluate, during the first postoperative year in obese pre-menopausal women, the effects of laparoscopic gastric banding on calcium and vitamin D metabolism, the potential modifications of bone mineral content and bone mineral density, and the risk of development of secondary hyperparathyroidism. SUBJECTS: Thirty-one obese pre-menopausal women aged between 25 and 52 y with a mean body mass index (BMI) of 43.6 kg/m(2), scheduled for gastric banding were included. Patients with renal, hepatic, metabolic and bone disease were excluded. METHODS: Body composition and bone mineral density (BMD) were measured at baseline, 6 and 12 months after gastric banding using dual-energy X-ray absorptiometry. Serum calcium, phosphate, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, bilirubin, urea, creatinine, uric acid, proteins, parathormone, vitamin D(3), IGF-1, IGF-BP3 and telopeptide, as well as urinary telopeptide, were measured at baseline and 1, 3, 6, 9 and 12 months after surgery. RESULTS: After 1 y vitamin D3 remained stable and PTH decreased by 12%, but the difference was not significant. Serum telopeptide C increased significantly by 100% (P<0.001). There was an initial drop of the IGF-BP3 during the first 6 months (P<0.05), but the reduction was no longer significant after 1 y. The BMD of cortical bone (femoral neck) decreased significantly and showed a trend of a positive correlation with the increase of telopeptides (P<0.06). The BMD of trabecular bone, at the lumbar spine, increased proportionally to the reduction of hip circumference and of body fat. CONCLUSION: There is no evidence of secondary hyperparathyroidism 1 y after gastric banding. Nevertheless biochemical bone markers show a negative remodelling balance, characterized by an increase of bone resorption. The serum telopeptide seems to be a reliable parameter, not affected by weight loss, to follow up bone turnover after gastroplasty.
Resumo:
A Strontium ranelate appears to influence more than alendronate distal tibia bone microstructure as assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), and biomechanically relevant parameters as assessed by micro-finite element analysis (mu FEA), over 2 years, in postmenopausal osteoporotic women.Introduction Bone microstructure changes are a target in osteoporosis treatment to increase bone strength and reduce fracture risk.Methods Using HR-pQCT, we investigated the effects on distal tibia and radius microstructure of strontium ranelate (SrRan; 2 g/day) or alendronate (70 mg/week) for 2 years in postmenopausal osteoporotic women. This exploratory randomized, double-blind trial evaluated HR-pQCT and FEA parameters, areal bone mineral density (BMD), and bone turnover markers.Results In the intention-to-treat population (n = 83, age: 64 +/- 8 years; lumbar T-score: -2.8 +/- 0.8 [DXA]), distal tibia Cortical Thickness (CTh) and Density (DCort), and cancellous BV/TV increased by 6.3%, 1.4%, and 2.5%, respectively (all P < 0.005), with SrRan, but not with alendronate (0.9%, 0.4%, and 0.8%, NS) (P < 0.05 for all above between-group differences). Difference for CTh evaluated with a distance transformation method was close to significance (P = 0.06). The estimated failure load increased with SrRan (+2.1%, P < 0.005), not with alendronate (-0.6%, NS) (between-group difference, P < 0.01). Cortical stress was lower with SrRan (P < 0.05); both treatments decreased trabecular stress. At distal radius, there was no between-group difference other than DCort (P < 0.05). Bone turnover markers decreased with alendronate; bALP increased (+21%) and serum-CTX-I decreased (-1%) after 2 years of SrRan (between-group difference at each time point for both markers, P < 0.0001). Both treatments were well tolerated.Conclusions Within the constraints of HR-pQCT method, and while a possible artefactual contribution of strontium cannot be quantified, SrRan appeared to influence distal tibia bone microstructure and FEA-determined biomechanical parameters more than alendronate. However, the magnitude of the differences is unclear and requires confirmation with another method.
Resumo:
This case-control study assessed whether the trabecular bone score (TBS), determined from gray-level analysis of DXA images, might be of any diagnostic value, either alone or combined with bone mineral density (BMD), in the assessment of vertebral fracture risk among postmenopausal women with osteopenia. Of 243 postmenopausal Caucasian women, 50-80 years old, with BMD T-scores between -1.0 and -2.5, we identified 81 with osteoporosis-related vertebral fractures and compared them with 162 age-matched controls without fractures. Primary outcomes were BMD and TBS. For BMD, each incremental decrease in BMD was associated with an OR = 1.54 (95% CI = 1.17-2.03), and the AUC was 0.614 (0.550-0.676). For TBS, corresponding values were 2.53 (1.82-3.53) and 0.721 (0.660-0.777). The difference in the AUC for TBS vs. BMD was statistically significant (p = 0.020). The OR for (TBS + BMD) was 2.54 (1.86-3.47) and the AUC 0.732 (0.672-0.787). In conclusion, the TBS warrants a closer look to see whether it may be of clinical usefulness in the determination of fracture risk in postmenopausal osteopenic women.
Resumo:
Dual-energy X-ray absorptiometry (DXA) measurement of bone mineral density (BMD) is the reference standard for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel grey-level texture measurement that can be extracted from DXA images, predicts osteoporotic fractures independent of BMD. Our aim was to identify clinical factors that are associated with baseline lumbar spine TBS. In total, 29,407 women ≥50yr at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Multiple linear regression and logistic regression (lowest vs highest tertile) was used to define the sensitivity of TBS to other risk factors associated with osteoporosis. Only a small component of the TBS measurement (7-11%) could be explained from BMD measurements. In multiple linear regression and logistic regression models, reduced lumbar spine TBS was associated with recent glucocorticoid use, prior major fracture, rheumatoid arthritis, chronic obstructive pulmonary disease, high alcohol intake, and higher body mass index. In contrast, recent osteoporosis therapy was associated with a significantly lower likelihood for reduced TBS. Similar findings were seen after adjustment for lumbar spine or femoral neck BMD. In conclusion, lumbar spine TBS is strongly associated with many of the risk factors that are predictive of osteoporotic fractures. Further work is needed to determine whether lumbar spine TBS can replace some of the clinical risk factors currently used in fracture risk assessment.
Resumo:
Osteoporosis incidence increases exponentially with age in men and hypogonadism represents a risk factor. Sex steroids levels are correlated to bone mineral density and to fracture prevalence. Most studies demonstrate an improvement in bone mineral density in men with hypogonadism as a result of testosterone therapy. Nevertheless there are no data evaluating the effect of testosterone therapy on fractures in men. Approximately 20% of men older than 60 have a total testosterone level lower than the lower limit of the reference range but there is no true consensus on the definition of hypogonadism in older men. In older men we recommend to treat only if total morning testosterone levels are < 8 nmol/l or even < 6,9 nmol/l on several occasions in the absence of any reversible illness and if there is no contraindication for treatment.