978 resultados para Bone marrow stromal cell
Resumo:
The method of isolation of bone marrow (BM) mesenchymal stem/stromal cells (MSCs) is a limiting factor in their study and therapeutic use. MSCs are typically expanded from BM cells selected on the basis of their adherence to plastic, which results in a heterogeneous population of cells. Prospective identification of the antigenic profile of the MSC population(s) in BM that gives rise to cells with MSC activity in vitro would allow the preparation of very pure populations of MSCs for research or clinical use. To address this issue, we used polychromatic flow cytometry and counterflow centrifugal elutriation to identify a phenotypically distinct population of mesenchymal stem/progenitor cells (MSPCs) within human BM. The MSPC activity resided within a population of rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack CD44, an antigen that is highly expressed on culture-expanded MSCs. In culture, these MSPCs adhere to plastic, rapidly proliferate, and acquire CD44 expression. They form colony forming units-fibroblast and are able to differentiate into osteoblasts, chondrocytes, and adipocytes under defined in vitro conditions. Their acquired expression of CD44 can be partially downregulated by treatment with recombinant human granulocyte-colony stimulating factor, a response not found in BM-MSCs derived from conventional plastic adherence methods. These observations indicate that MSPCs within human BM are rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack expression of CD44. These MSPCs give rise to MSCs that have phenotypic and functional properties that are distinct from those of BM-MSCs purified by plastic adherence.
Resumo:
A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.
Resumo:
An in vitro system allowing the culture of ovine bone marrow-derived macrophages (BMMs) is described. Bone marrow (BM) cells from the sternum of 4- to 9-month-old sheep were cultured in liquid suspension in hydrophobic bags with medium containing 20% autologous serum and 20% fetal calf serum (FCS). Cells with macrophage characteristics were positively selected and increased four- to five-fold between day (d) 0 and d18. Granulocytes and cells of lymphoid appearance including progenitor cells were negatively selected and were diminished 50-fold during this 18-d culture. The addition of macrophage colony-stimulating factor (M-CSF)-containing supernatants to liquid cultures did not significantly improve the yield of BMM in 18-d cultures. In contrast, cell survival at d6 and macrophage cell yield at d18 depended on the concentration and source of serum in the culture medium. FCS and 1:1 mixtures of FCS and autologous serum were superior to autologous serum alone. Analysis of growth requirements of ovine BMMs suggested that they are under more complex growth control than their murine counterparts. In an [3H]thymidine incorporation assay with BM cells collected at different times of culture, d3 or d4 BM cells responded to human recombinant M-CSF, human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), bovine GM-CSF, murine M-CSF or murine M-CSF-containing supernatants, and bovine interleukin 1 beta (IL-1 beta) in decreasing order of magnitude. Likewise, pure murine BMM populations harvested at d6 responded to homologous GM-CSF, IL-3, and human or murine M-CSF. FCS did not stimulate the proliferation of murine BMMs (d6) and of ovine BM cells (d3 or d4). In contrast, ovine BM cells harvested at d12 responded to FCS by proliferation in a dose-dependent manner but failed to proliferate in the presence of human or murine M-CSF or M-CSF-containing supernatants of mouse and sheep fibroblasts containing mouse macrophage growth-promoting activity. Likewise, various cytokine-containing supernatants and recombinant cytokines (murine IL-3, murine and human GM-CSF, murine and bovine IL-1 beta) did not promote proliferation of ovine d12 BM cells to an extent greater than that achieved with 15% FCS alone. Thus, ovine BMM proliferation is under the control of at least two factors acting in sequence, M-CSF and an unidentified factor contained in FCS. The ovine BMM culture system may provide a model for the analysis of myelomonocytopoiesis in vitro.
Resumo:
Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-beta1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting.
Resumo:
Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86-all costimulatory molecules of phagocytic cells-were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.
Resumo:
This study analysed the outcome of 563 Aplastic Anaemia (AA) children aged 0-12 years reported to the Severe Aplastic Anaemia Working Party database of the European Society for Blood and Marrow Transplantation, according to treatment received. Overall survival (OS) after upfront human leucocyte antigen-matched family donor (MFD) haematopoietic stem cell transplantation (HSCT) or immunosuppressive treatment (IST) was 91% vs. 87% (P 0·18). Event-free survival (EFS) after upfront MFD HSCT or IST was 87% vs. 33% (P 0·001). Ninety-one of 167 patients (55%) failed front-line IST and underwent rescue HSCT. The OS of this rescue group was 83% compared with 91% for upfront MFD HSCT patients and 97% for those who did not fail IST up-front (P 0·017). Rejection was 2% for MFD HSCT and HSCT post-IST failure (P 0·73). Acute graft-versus-host disease (GVHD) grade II-IV was 8% in MFD graft vs. 25% for HSCT post-IST failure (P < 0·0001). Chronic GVHD was 6% in MFD HSCT vs. 20% in HSCT post-IST failure (P < 0·0001). MFD HSCT is an excellent therapy for children with AA. IST has a high failure rate, but remains a reasonable first-line choice if MFD HSCT is not available because high OS enables access to HSCT, which is a very good rescue option.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
Autophagy has been demonstrated to have an essential function in several cellular hematopoietic differentiation processes, for example, the differentiation of reticulocytes. To investigate the role of autophagy in neutrophil granulopoiesis, we studied neutrophils lacking autophagy-related (Atg) 5, a gene encoding a protein essential for autophagosome formation. Using Cre-recombinase mediated gene deletion, Atg5-deficient neutrophils showed no evidence of abnormalities in morphology, granule protein content, apoptosis regulation, migration, or effector functions. In such mice, however, we observed an increased proliferation rate in the neutrophil precursor cells of the bone marrow as well as an accelerated process of neutrophil differentiation, resulting in an accumulation of mature neutrophils in the bone marrow, blood, spleen, and lymph nodes. To directly study the role of autophagy in neutrophils, we employed an in vitro model of differentiating neutrophils that allowed modulating the levels of ATG5 expression, or, alternatively, intervening pharmacologically with autophagy-regulating drugs. We could show that autophagic activity correlated inversely with the rate of neutrophil differentiation. Moreover, pharmacological inhibition of p38 MAPK or mTORC1 induced autophagy in neutrophilic precursor cells and blocked their differentiation, suggesting that autophagy is negatively controlled by the p38 MAPK-mTORC1 signaling pathway. On the other hand, we obtained no evidence for an involvement of the PI3K-AKT or ERK1/2 signaling pathways in the regulation of neutrophil differentiation. Taken together, these findings show that, in contrast to erythropoiesis, autophagy is not essential for neutrophil granulopoiesis, having instead a negative impact on the generation of neutrophils. Thus, autophagy and differentiation exhibit a reciprocal regulation by the p38-mTORC1 axis.
Resumo:
OBJECTIVES Osteoclasts rapidly form on the surface of bone chips at augmentation sites. The underlying molecular mechanism, however, is unclear. Soluble factors released from bone chips in vitro have a robust impact on mesenchymal cell differentiation. Whether these soluble factors change the differentiation of hematopoietic cells into osteoclasts remains unknown. METHODS Osteoclastogenesis, the formation of tartrate-resistant acid phosphatase-positive multinucleated cells, was studied with murine bone marrow cultures exposed to RANKL and M-CSF, and conditioned medium from fresh (BCM) and demineralized bone matrix (DCM). Histochemical staining, gene and protein expression, as well as viability assays were performed. RESULTS This study shows that BCM had no impact on osteoclastogenesis. However, when BCM was heated to 85°C (BCMh), the number of tartrate-resistant acid phosphatase-positive multinucleated cells that developed in the presence of RANKL and M-CSF approximately doubled. In line with the histochemical observations, there was a trend that BCMh increased expression of osteoclast marker genes, in particular the transcription factor c-fos. The expression of c-fos was significantly reduced by the TGF-β receptor I antagonist SB431542. DCM significantly stimulated osteoclastogenesis, independent of thermal processing. CONCLUSIONS These data demonstrate that activated BCM by heat and DBM are able to stimulate osteoclastogenesis in vitro. These in vitro results support the notion that the resorption of autografts may be supported by as yet less defined paracrine mechanisms.
Resumo:
Gut was studied as a prototypical mucosal membrane in the murine BDF-1 syngeneic bone marrow transplant model. Measures of jejunal intraepithelial lymphocytes (IELs) and crypt cells were obtained by standard techniques and a method of quantifying gut lamina propria plasma cells (PCs) was developed. The degree of ablation of gut PCs and IELs after 900 rads total body irradiation with ('60)Co, and their repopulation effected by transplantation with 2.0 x 10('5) or 1.0 x 10('6) bone marrow cells demonstrated a prolonged period of profound depression in population levels of these cells which was not reflected by the extent of damage sustained to the epithelium. Differences in the depopulation and recovery of gut PCs and IELs revealed a tendency towards initial differentiation of effector cells. A positive dose response to high bone marrow cell innocula was obtained. Subsequent studies determined that gut IEL and PC repopulation was potentiated by the addition of IELs or buffy coat cells (BCs) to the bone marrow transplant. A method of isolating 1.4 - 4.0 x 10('7) viable IELs per gram of murine small bowel was devised employing intralumenal hyaluronidase digestion of the epithelial layer and centrifugation of the resulting suspension through discontinuous Percoll gradients. Irradiated mice received 2.0 x 10('5) bone marrow cells along with an equal number of IELs or BCs. The extent and duration of depression of numbers of IELs and PCs was markedly reduced by the addition of the IEL isolate to the transplantation innocula, and to a lesser degree by the addition of BCs. The augmentation of repopuation far exceeded that expected by simple lodging of cells suggesting that the additionally transplanted cells contained a subpopulation of mucosal membrane lymphoid stem cells or helper cells. Correlation analysis of PC versus IEL levels suggests a possible feedback mechanism governing the relative size of their populations. Normal ratios of IgA, IgM, and IgG bearing PCs was maintained post transplantation with all of the regimens. ^
Resumo:
Allogeneic bone marrow transplantation (BMT) is known to induce a beneficial anti-tumor immune response called graft-versus-tumor (GVT) activity. However, GVT activity is closely associated with graft-versus-host disease (GVHD), a potentially fatal immune response against antigens on normal recipient tissues. The T-cell populations mediating these two processes are often overlapping, but studies have shown that some donor T-cells can be tumor-specific. Therefore, the goal of this study was to develop strategies for preferentially activating donor T-cells capable of mediating GVT activity but not GVHD. The three hypotheses tested were: (1) Pre-transplant immunization of BMT donors with a recipient-derived tumor cell vaccine will induce a relative increase in GVT activity as compared to GVHD. (2) Post-transplant tumor immunization of BMT recipients will enhance GVT activity without exacerbating GVHD. (3) Pre-transplant immunization of BMT donors against a tumor-specific antigen will enhance GVT activity without exacerbating GVHD. ^ To test the first two hypotheses, C3H.SW mice (MHC-matched donors) were immunized with a C57BL/6 (recipient)-derived tumor cell vaccine (leukemia or fibrosarcoma) prior to BMT, or recipients were immunized starting one month after BMT. Both donor and recipient immunization led to a significant increase in GVT activity (enhanced recipient survival and decreased tumor growth). However, donor immunization also increased fatal GVHD, which was at least partially due to activation of alloreactive T-cells recognizing the immunodominant minor histocompatibility antigen B6dom1. GVT immunity following recipient immunization was not associated with an exacerbation of GVHD or a response to B6dom1. ^ To test the third hypothesis, influenza nucleoprotein (NP) was used as a model tumor antigen. C3H.SW donors were immunized against NP prior to BMT, which led to a significant increase in GVT activity. Although recipients were not completely protected against growth of antigen loss variant tumors, there was no increase in GVHD. ^ In conclusion, (1) immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine substantially increases GVT activity but also exacerbates GVHD, (2) post-transplant tumor immunization of allogeneic BMT recipients significantly increases GVT activity and survival without exacerbating GVHD, and (3) immunization of allogeneic BMT donors against a tumor-specific antigen significantly enhances GVT activity without exacerbating GVHD. ^
Resumo:
Transplantations of fully allogeneic, autoimmune-resistant T-cell-depleted marrow (TCDM) plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice were carried out to investigate the ability of the mixed bone marrow transplantation (BMT) to prevent development of autoimmune disease and, at the same time, to reconstitute fully the immunity functions of heavily irradiated BXSB recipients. Male BXSB mice were engrafted with mixed TCDM from both allogeneic, autoimmune-resistant BALB/c mice and syngeneic, autoimmune-prone BXSB mice. BMT with mixed TCDM from both resistant and susceptible strains of mice (mixed BMT) prolonged the median life span and inhibited development of glomerulonephritis in BXSB mice. BMT with mixed TCDM also prevented the formation of anti-DNA antibodies that is typically observed in male mice of this strain. Moreover, mixed BMT reconstituted primary antibody production in BXSB recipients, so that no annoying immunodeficiencies that are regularly observed in fully allogeneic chimeras were present in the recipient of the mixed TCDM. These findings indicate that transplanting allogeneic, autoimmune-resistant TCDM plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice prevents development of autoimmune disease in this strain of mice. In addition, this dual BMT reconstitutes the immunity functions and avoids the immunodeficiencies that occur regularly in fully allogeneic chimeras after total-body irradiation.
Resumo:
Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.
Resumo:
A major problem facing the effective treatment of patients with cancer is how to get the specific antitumor agent into every tumor cell. In this report we describe the use of a strategy that, by using retroviral vectors encoding a truncated human CD5 cDNA, allows the selection of only the infected cells, and we show the ability to obtain, before bone marrow transplantation, a population of 5-fluouraci-treated murine bone marrow cells that are 100% marked. This marked population of bone marrow cells is able to reconstitute the hematopoietic system in lethally irradiated mice, indicating that the surface marker lacks deleterious effects on the functionality of bone marrow cells. No gross abnormalities in hematopoiesis were detected in mice repopulated with CD5-expressing cells. Nevertheless, a significant proportion of the hematopoietic cells no longer expresses the surface marker CD5 in the 9-month-old recipient mice. This transcriptional inactivity of the proviral long terminal repeat (LTR) was accompanied by de novo methylation of the proviral sequences. Our results show that the use of the CD5 as a retrovirally encoded marker enables the rapid, efficient, and nontoxic selection in vitro of infected primary cells, which can entirely reconstitute the hematopoietic system in mice. These results should now greatly enhance the power of studies aimed at addressing questions such as generation of cancer-negative hematopoiesis.