936 resultados para Black holes in HL gravity
Resumo:
The SESAME dataset contains mesozooplankton data collected during April 2008 in the North-West Black Sea (between 44°46' N and 42°29'N latitude and 28°64'E and 30°59'E longitude). Mesozooplankton sampling was undertaken at 9 stations where samples were collected using a Nansen closing net in the 0-10, 10-25, 25-50, 50-100, 100-150, 150-180 m layer. The dataset includes 28 samples analysed for mesozooplankton species composition, species abundance and total biomass. The Taxon-specific mesozooplankton abundance sample or aliquots were analyzed under the binocular microscope. Taxonomic identification was done according to Morduhai-Boltovskii et al. 1968. Total biomass was estimated using a tabel with wet weight for each species an stage (Petipa method).
Resumo:
On the basis of analyses of samples collected in the eastern Black Sea in September 1996 trends of increase in surface zooplankton biomass and general decrease in Mnemiopsis biomass were revealed.
Resumo:
During field studies relationships between chlorophyll concentrations, phytoplankton biomass (total, individual sizes and species) and level of accumulation of total lipids, wax esters, triacylglycerols, and phospholipids in C. euxinus (copepodites V and females) were studied. These relationships allowed to display not only simple trophic relations between isolated parts of the C. euxinus population and phytoplankton, but also selective role of individual algae species in forming lipid reserves too. Besides it was found that geographical variability of chlorophyll concentration and phytoplankton biomass correlates closely only with those lipid fractions (wax esters and phospholipids) of C. euxinus, which accumulated and kept in a body for a fairly long time. No correlation was found between phytoplankton and for rapidly metabolized triacylglycerols, which have to be utilized within few hours.
Resumo:
Bio-optical characteristics of phytoplankton have been observed during two-year monitoring in the western Black Sea. High variability in light absorption coefficient of phytoplankton was due to change of pigment concentration and chlorophyll a specific absorption coefficient. A relationships between light absorption coefficients and chlorophyll a concentration have been found: for the blue maximum (a_ph(440) = 0.0413x**0.628; R**2 = 0.63) and for the red maximum (?_ph(678) = 0.0190x**0.843; R**2 = 0.83). Chlorophyll a specific absorption coefficients decreased while pigment concentration in the Sea increased. Observed variability in chlorophyll a specific absorption coefficient at chlorophyll a concentrations <1.0 mg/m**3 had seasonal features and was related with seasonal change of intracellular pigment concentration. Ratio between the blue and red maxima decreased with increasing chlorophyll a concentration (? = 2.14 x**-0.20; R**2 = 0.41). Variability of spectrally averaged absorption coefficient of phytoplankton (a'_ph ) on 95% depended on absorption coefficient at the blue maximum (y = 0.421x; R**2 = 0.95). Relation of a_ph with chlorophyll a concentration was described by a power function (y = 0.0173x**0.0709; R**2 = 0.65). Change of spectra shape was generally effected by seasonal dynamics of intracellular pigment concentration, and partly effected by taxonomic and cell-size structure of phytoplankton.