883 resultados para Black flying fox


Relevância:

20.00% 20.00%

Publicador:

Resumo:

String theory and gauge/gravity duality suggest the lower bound of shear viscosity (eta) to entropy density (s) for any matter to be mu h/4 pi k(B), when h and k(B) are reduced Planck and Boltzmann constants respectively and mu <= 1. Motivated by this, we explore eta/s in black hole accretion flows, in order to understand if such exotic flows could be a natural site for the lowest eta/s. Accretion flow plays an important role in black hole physics in identifying the existence of the underlying black hole. This is a rotating shear flow with insignificant molecular viscosity, which could however have a significant turbulent viscosity, generating transport, heat and hence entropy in the flow. However, in presence of strong magnetic field, magnetic stresses can help in transporting matter independent of viscosity, via celebrated Blandford-Payne mechanism. In such cases, energy and then entropy produces via Ohmic dissipation. In,addition, certain optically thin, hot, accretion flows, of temperature greater than or similar to 10(9) K, may be favourable for nuclear burning which could generate/absorb huge energy, much higher than that in a star. We find that eta/s in accretion flows appears to be close to the lower bound suggested by theory, if they are embedded by strong magnetic field or producing nuclear energy, when the source of energy is not viscous effects. A lower bound on eta/s also leads to an upper bound on the Reynolds number of the flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the process of bound state formation in a D-brane collision. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and time scale for formation of a bound state agree at the correspondence point. The time scale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new 3 level common mode voltage eliminated inverter using an inverter structure formed by cascading a H-Bridge with a three-level flying capacitor inverter. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-Bridge fails, the system can still be operated as a normal 3 level inverter mode at full power. This inverter has many advantages like use of single DC-supply, making it possible for a back to back grid-tied converter application, improved reliability etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the collapse of a fuzzy sphere, that is a spherical membrane built out of D0-branes, in the Banks-Fischler-Shenker-Susskind model. At weak coupling, as the sphere shrinks, open strings are produced. If the initial radius is large then open string production is not important and the sphere behaves classically. At intermediate initial radius the backreaction from open string production is important but the fuzzy sphere retains its identity. At small initial radius the sphere collapses to form a black hole. The crossover between the later two regimes is smooth and occurs at the correspondence point of Horowitz and Polchinski.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate ((M) over dot) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given (M) over dot. However, slowly spinning BHs can turn out to be more massive than spinning BHs if (M) over dot at their formation stage was higher compared to faster spinning BHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3 vertical bar 2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3 vertical bar 2). Using the relation between the bulk field equations and the Ward identities of a CFT with N = 2 super-W-3 symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the N = 2 super-W-3 algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High elevation montane areas are called ``sky islands'' when they occur as a series of high mountains separated by lowland valleys. Different climatic conditions at high elevations makes sky islands a specialized type of habitat, rendering them naturally fragmented compared to more continuous habitat at lower elevations. Species in sky islands face unsuitable climate in the intervening valleys when moving from one montane area to another. The high elevation shola-grassland mosaic in the Western Ghats of southern India form one such sky island complex. The fragmented patches make this area ideal to study the effect of the spatial orientation of suitable habitat patches on population genetic structure of species found in these areas. Past studies have suggested that sky islands tend to have genetically structured populations, possibly due to reduced gene flow between montane areas. To test this hypothesis, we adopted the comparative approach. Using Amplified Fragment Length Polymorphisms, we compared population genetic structures of two closely related, similar sized butterfly species: Heteropsis oculus, a high elevation shola-grassland specialist restricted to the southern Western Ghats, and Mycalesis patnia, found more continuously distributed in lower elevations. In all analyses, as per expectation the sky island specialist H. oculus exhibited a greater degree of population genetic structure than M. patnia, implying a difference in geneflow. This difference in geneflow in turn appears to be due to the natural fragmentation of the sky island complexes. Detailed analysis of a subset of H. oculus samples from one sky island complex (the Anamalais) showed a surprising genetic break. A possible reason for this break could be unsuitable conditions of higher temperature and lower rainfall in the intervening valley region. Thus, sky island species are not only restricted by lack of habitat continuity between montane areas, but also by the nature of the intervening habitat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effects of optically thin radiative cooling on the structure of radiatively inefficient accretion flows (RIAFs). The flow structure is geometrically thick, and independent of the gas density and cooling, if the cooling time is longer than the viscous time-scale (i.e. t(cool) greater than or similar to t(visc)). For higher densities, the gas can cool before it can accrete and forms the standard geometrically thin, optically thick Shakura-Sunyaev disc. For usual cooling processes (such as bremsstrahlung), we expect an inner hot flow and an outer thin disc. For a short cooling time the accretion flow separates into two phases: a radiatively inefficient hot coronal phase and a cold thin disc. We argue that there is an upper limit on the density of the hot corona corresponding to a critical value of t(cool)/t(ff)( similar to 10-100), the ratio of the cooling time and the free-fall time. Based on our simulations, we have developed a model for transients observed in black hole X-ray binaries (XRBs). An XRB in a quiescent hot RIAF state can transition to a cold blackbody-dominated state because of an increase in the mass accretion rate. The transition from a thin disc to a RIAF happens because of mass exhaustion due to accretion; the transition happens when the cooling time becomes longer than the viscous time at inner radii. Since the viscous time-scale for a geometrically thin disc is quite long, the high-soft state is expected to be long-lived. The different time-scales in black hole transients correspond to different physical processes such as viscous evolution, cooling and free fall. Our model captures the overall features of observed state transitions in XRBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the recently developed model predictive static programming (MPSP), a suboptimal guidance logic is presented in this paper for formation flying of small satellites. Due to the inherent nature of the problem formulation, MPSP does not require the system dynamics to be linearized. The proposed guidance scheme is valid both for high eccentricity chief satellite orbits as well as large separation distance between chief and deputy satellites. Moreover, since MPSP poses the desired conditions as a set of `hard constraints', the final accuracy level achieved is very high. The proposed guidance scheme has been tested successfully for a variety of initial conditions and for a variety of formation commands as well. Comparison with standard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for MPSP) and another nonlinear controller, State Dependent Riccati Equation (SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and with lesser amount of control usage as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-level common-mode voltage eliminated inverter with single dc supply using flying capacitor inverter and cascaded H-bridge has been proposed in this paper. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-bridge fails, the system can still be operated as a normal three-level inverter at full power. This inverter has many other advantages like use of single dc supply, making it possible for a back-to-back grid-tied converter application, improved reliability, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) are present in our every day used products such as plastics, cosmetics, air fresheners, paint, etc. The determination of amount of VOC present in atmosphere can be carried out via various sensors. In this work a nanocomposite of a novel thiophene based conducting polymer and carbon black is used as a volatile organic compound sensor. The fabricated 2 lead chemiresistor sensor was tested for vapours of toluene, acetone, cylcohexane, and carbon tetrachloride. The sensor responds to all the vapours, however, exhibit maximum response to toluene vapours. The sensor was evaluated for various concentrations of toluene. The lower limit of detection of the sensor is 15 +/- 10 ppm. The study of the effect of humidity on senor response to toluene showed that the response decreases at higher humidity conditions. The surface morphology of the nanocomposite was characterized by scanning electron microscopy. Diffuse reflectance spectroscopy was used to investigate the absorption of vapours by the nanocomposite film. Contact angle measurements were used to present the effect of water vapour on the toluene response of nanocomposite film. Solubility parameter of the conducting polymer is predicted by molecular dynamics. The sensing behaviour of the conducting polymer is correlated with solubility parameter of the polymer. Dispersion interaction of conducting polymer with toluene is believed to be the reason for the selective response towards toluene. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the `neighboring' (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the logarithmic correction to black hole entropy about exponentially suppressed saddle points of the Quantum Entropy Function corresponding to Z(N) orbifolds of the near horizon geometry of the extremal black hole under study. By carefully accounting for zero mode contributions we show that the logarithmic contributions for quarter-BPS black holes in N = 4 supergravity and one-eighth BPS black holes in N = 8 supergravity perfectly match with the prediction from the microstate counting. We also find that the logarithmic contribution for half-BPS black holes in N = 2 supergravity depends non-trivially on the Z(N) orbifold. Our analysis draws heavily on the results we had previously obtained for heat kernel coefficients on Z(N) orbifolds of spheres and hyperboloids in arXiv:1311.6286 and we also propose a generalization of the Plancherel formula to Z(N) orbifolds of hyperboloids to an expression involving the Harish-Chandra character of sl (2, R), a result which is of possible mathematical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the dynamic inversion philosophy, a nonlinear partial integrated guidance and control approach is presented in this paper for formation flying. It is based on the evolving philosophy of integrated guidance and control. However, it also retains the advantages of the conventional guidance then control philosophy by retaining the timescale separation between translational and rotational dynamics explicitly. Simulation studies demonstrate that the proposed technique is effective in bringing the vehicles into formation quickly and maintaining the formation.