312 resultados para Biphytanes, acyclic
Resumo:
In order to achieve the high performance, we need to have an efficient scheduling of a parallelprogram onto the processors in multiprocessor systems that minimizes the entire executiontime. This problem of multiprocessor scheduling can be stated as finding a schedule for ageneral task graph to be executed on a multiprocessor system so that the schedule length can be minimize [10]. This scheduling problem is known to be NP- Hard.In multi processor task scheduling, we have a number of CPU’s on which a number of tasksare to be scheduled that the program’s execution time is minimized. According to [10], thetasks scheduling problem is a key factor for a parallel multiprocessor system to gain betterperformance. A task can be partitioned into a group of subtasks and represented as a DAG(Directed Acyclic Graph), so the problem can be stated as finding a schedule for a DAG to beexecuted in a parallel multiprocessor system so that the schedule can be minimized. Thishelps to reduce processing time and increase processor utilization. The aim of this thesis workis to check and compare the results obtained by Bee Colony algorithm with already generatedbest known results in multi processor task scheduling domain.
Resumo:
The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1,3-Diols are frequently involved in biologically important compounds and, therefore, determination of the stereochemistry of these structural elements, in particular those in acyclic systems, has been one of the focuses of attention in natural products chemistry. The modified Mosher's method, commonly used for the determination of the absolute configuration of secondary alcohols, was applied to determine the absolute configuration of 1,3-diols with their di-MTPA esters. Several epimeric pairs of syn- and anti-1,3-diols with known absolute configurations were converted to the corresponding di-MTPA esters and the Delta delta values were then calculated. For the acyclic syn-1,3-diols, the Delta delta values were systematically arranged as predicted from the basic concept of the modified Mosher's method, demonstrating that the method is valid for these compounds. In contrast, the Delta delta values were irregularly arranged for the acyclic anti-1,3-diols and, accordingly, this method is not valid for these cases. These results are complementary to those of the previously reported CD exciton chirality method and, hence, the combined use of the modified Mosher's method and the CD exciton chirality method can determine the absolute configuration of the acyclic 1,3-diols. Also, this method is successfully applicable to cyclic 1,3-diols irrespective of their relative stereochemistry. (C) 2002 Wiley-lass, Inc.
Resumo:
Lycopene is a natural pigment synthesized by plants and microorganisms, and it is mainly found in tomatoes. It is an acyclic isomer of P-carotene and one of the most potent antioxidants. Several studies have demonstrated the ability of lycopene to prevent chemically induced DNA damage; however, the mechanisms involved are still not clear. In the present study, we investigated the antigenotoxic/antimutagenic effects of lycopene in Chinese Hamster Ovary Cells (CHO) treated with hydrogen peroxide, methylmethanesulphonate (MMS), or 4-nitroquinoline-1-oxide (4-NQO). Lycopene (97%), at final concentrations of 10, 25, and 50 M, was tested under three different protocols: before, simultaneously, and after the treatment with the mutagens. Comet and cytokinesis-block micronucleus assays were used to evaluate the level of DNA damage. Data showed that lycopene reduced the frequency of micronucleated cells induced by the three mutagens. However, this chemopreventive activity was dependent on the concentrations and treatment schedules used. Similar results were observed in the comet assay, although some enhancements of primary DNA damage were detected when the carotenoid was administered after the mutagens. In conclusion, our findings confirmed the chemopreventive activity of lycopene, and showed that this effect occurs under different mechanisms. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A combined theoretical and experimental study to elucidate the molecular mechanism for the Grob fragmentation of different (N-halo)-2-amino cyclocarboxylates with the nitrogen atom in exocyclic position: (N-Cl)-2-amino cyclopropanecarboxylate (1), (N-Cl)-2-amino cyclobutanecarboxylate (2), (N-Cl)-2-amino cyclopentanecarboxylate (3) and (N-Cl)-2-amino cyclohexanecarboxylate (4), and the corresponding acyclic compounds, (N-Cl)-2-amino isobutyric acid (A), (N-Cl)-2-amino butyric acid (B), has been carried out. The kinetics of decomposition for these compounds and related bromine derivatives were experimentally determined by conventional and stopped-flow UV spectrophotometry. The reaction products have been analyzed by GC and spectrophotometry. Theoretical analysis is based in the localization of stationary points (reactants and transition structures) on the potential energy surface. Calculations were carried out at B3LYP/6-31+G* and MP2/6-31+G* computing methods in the gas phase, while solvent effects have been included by means the self-consistent reaction field theory, PCM continuum model, at MP2/6-31+G* and MP4/6-31+G*//MP2/6-31+G* calculation levels. Based on both experimental and theoretical results, the different Grob fragmentation processes show a global synchronicity index close to 0.9, corresponding to a nearly concerted process. At the TSs, the N-Cl bond breaking is more advanced than the C-C cleavage process. An antiperiplanar configuration of these bonds is reached at the TSs, and this geometrical arrangement is the key factor governing the decomposition. In the case of 1 and 2 the ring strain prevents this spatial disposition, leading to a larger value of the activation barrier. Natural population analysis shows that the polarization of the N-Cl and C-C bonds along the bond-breaking process can be considered the driving force for the decomposition and that a negative charge flows from the carboxylate group to the chlorine atom to assist the reaction pathway. A comparison of theoretical and experimental results shows the relevance of calculation level and the inclusion of solvent effects for determining accurate unimolecular rate coefficients for the decomposition process. © 2002 Published by Elsevier Science B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The length of the post-partum anoestrous interval affects reproductive efficiency in many tropical beef cattle herds. In this study, results from genome-wide association studies (Experiment 1: GWAS) and gene expression (Experiment 2: microarray) were combined in a systems approach to reveal genetic markers, genes and pathways underlying the physiology of post-partum anoestrus in tropically adapted cattle. The microarray study measured the expression of 13,964 genes in the hypothalamus of Brahman cows. A total of 366 genes were differentially expressed (DE) in the post-partum period, when acyclic cows were compared to cows that had resumed ovarian cycles. Associated markers (P < 0.05) from a high density GWAS pointed to 2829 genes that were associated with post-partum anoestrous interval (PPAI) in two populations of beef cattle: Brahman and Tropical composite. Together the experiments provided evidence for 63 genes that are likely to influence the resumption of ovulation post-partum in tropically adapted beef cattle. Functional annotation analysis revealed that some of the 63 genes have known roles in hormonal activity, energy balance and neuronal synapse plasticity. Polymorphisms within candidate genes identified by this systems approach could have biological significance in post-partum anoestrus and help select Zebu (Bos indicus) influenced cattle with genetic potential for shorter post-partum anoestrus. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
Alterations in the hypothalamic-pituitary-gonadal axis in females determine the transition from regular to irregular reproductive cycles, with loss of fertility. Stimulation of noradrenergic neurons of the anteroventral periventricular neurons (AVPV) is essential for regular reproductive cycles. Therefore, we examined the activity of neurons of the AVPV and measure the noradrenaline (NE) of acyclic rats, in constant estrus, and compared it with that of cyclic rats in estrus. Female cyclic (4-5months) and acyclic (17-18months) rats were euthanized at 10, 14, and 18h in estrus. Brains were processed for immunoreactivity to antigens related to Fos (FRA) in AVPV, and the NE was determined by HPLC-ED. Plasma concentrations of LH, FSH, E2 and P4 were determined. In the acyclic animals, plasma LH was higher but the FSH was lower. There was decreasing P4 at different times, while the E2 was constant and lower in acyclic rats. FRA-ir expression in AVPV neurons of acyclic rats as well as turnover of NE was higher when compared with cyclic group. The preliminary findings showed increased activity in AVPV neurons in aging contribute to changes in the temporal pattern of neuroendocrine signaling, compromising the accuracy of inhibitory and stimulatory effects, causing irregularity in the estrous cycle and determining reproductive senescence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rhodium-catalyzed asymmetric hydroboration in conjunction with directing groups can be used control relative and absolute stereochemistry. Hydroboration has the potential to create new C–C, C–O, and C–N bonds from an intermediate C–B bond with retention of stereochemistry. Desymmetrization resulting in the loss of one or more symmetry elements can give rise to molecular chirality, i.e., the conversion of a prochiral molecule to one that is chiral. Unsaturated amides and esters hold the potential for two-point binding to the rhodium catalyst and have been shown to direct the regiochemistry and impact stereochemistry in asymmetric hydroborations of acyclic β,γ-unsaturated substrates. In the present study, the pendant amide functionality directs the hydroboration cis in the cyclic substrates studied; the corresponding ester substrates do so to a lesser extent. The enantioselectivity is determined by regioselective addition to the re or si site of the rhodium-complexed alkene. The effect of catalyst, ligand and borane on the observed diastereoselectivity and enantioselectivity for a variety of cyclopentenyl ester and amide substrates is discussed.