916 resultados para Biomass Production
Resumo:
The objective of this study was to investigate the effect of the application of N fertilizer and the cutting age on the dry biomass production of elephant grass. The experiment was performed with the variety Paraiso and planted in a Ferralsol in 2008 in the district of Gurupi (State of Tocantins). Four different rates of urea application were tested (0, 50, 100 and 150 kg ha(-1)) and harvests were made at 120, 150 or 180 days after germination (DAG) of the setts. The dry matter and total N accumulation were evaluated. Dry matter production increased with dose of N, the greatest effect being observed at 180 DAG. There was a linear increase in dry matter (R-2 = 0.75**) and N accumulation (R-2 = 0.96**) permitting a productivity of 34 t ha(-1) of dry matter and an accumulation of 471 kg N ha(-1). The N utilization efficiency (biomass production per unit of applied N) increased with plant age. The higher efficiency of N use favored the quality of biomass production for energy production owing to the higher fibre content.
Resumo:
Three species of filamentous fungi, Aspergillus niger, Penicillium fellutanum and Mucor hiemalis, were selected and cultivated in vinasse media with different addition of molasses, pasteurized to 85°C for 30 minutes and with pH = 5.0. The microorganisms, previously adapted to the respective medium for 48 hours, from a solution of 107 spores.ml-1, were cultivated in pure and mixed cultures in Erlenmeyer vessel of 500ml, to 30°C, with constant agitation of 170 rpm, for 24, 48 and 72 hours, with four repetition for each samples. The biomass was separated by vacuum filtration in filter Whatman #1 and dried in oven at 105°C until right weight, the obtained liquid was submited to COD analysis. The datas were statistically analysed using a response surface methodology, to improve the effect on the molasses proportion and culture time, in the biomass production by microorganism in research. According to the obtained results (5.02% of molasses, 55.59h, 70% of spores solution of A. niger and 30% of spores solution of P. fellutanum), cultivating was carried out in Microferm Fermentor New Brunswick for 48 hours at 300 rpm, aired at 1v/v/m, using 5 liters of medium added with 5.0% of molasses on the conditions above described. The average of the results obtained (6.81g.l-1) was higher than the confidence interval (5.937 ; 6.369) and was inside the prediction interval (4.471 ; 7.834) both of them significant at 95% by the statistical test employed.
Resumo:
The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil - Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s-1 has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.
Resumo:
This work aimed to determine the best harvest time for biomass production, yield and essential oil composition considering the seasonal variation (spring, summer, autumn and winter) on different plant parts (apical, medial and basal). Essential oils were extracted by hydro-distillation with a Clevenger apparatus for both fresh and dry mass obtained in field and lab conditions respectively. The extracted essential oils were analyzed by GS/MS (Shimadzu, QP-5000). The chemical components were identified by comparing their mass spectrum to the patterns filed in the MS computer memory (Wiley,139,Lib.), to the literature references, and by co-injection with authentic standards. Applying phyto-chemical tests on fresh and dry mass, the chemical component percentages of essential oils were calculated and identified as follows: citral (neral and geranial), myrcene, caryophylene and elemene.
Resumo:
In order to evaluate growth characteristics, adaptability, biomass production, nutrient recycling, nutrient distribution and the ability to regenerate degraded land, a trial using four multipurpose tree species (Leucaena leucocephala, Leucaena diversifolia, Acacia melanoxylon and Mimosa scabrella) was undertaken over two years in a distrophic red yellow latosol (oxisol) following a randomized block experimental design with four replications. At the age of two years, A. melanoxylon and L. diversifolia were the tallest species (5.25 and 4.97 m, respectively) and A. melanoxylon and M. scabrella had the largest diameters at 20 cm from tree base. Mimosa scabrella and A. melanoxylon had the highest dry matter production and quantity of nutrients in the above ground biomass. In all species, the highest nutrient contents were found in the leaves, followed by branches and stems. From all species, the highest Nutrient Utilization Efficiency Indexes were obtained for sulphur, phosphorous, and magnesium; L. diversifolia was the most efficient for nitrogen, potassium, calcium, sulphur, and manganese, while A. melanoxylon was the most efficient for phosphorus, magnesium, boron, iron, and zinc. Litter production levels over a three month period were as follows: M. scabrella > A. melanoxylon > L. diversifolia > L. leucocephala. Litter nutrient content was higher in M. scabrella than in the other species.
Resumo:
The aim of this study was to evaluate the influence of different types of rhizomes utilized as seed and the effects of mulch in the culture of Turmeric. This work was conducted in the experimental cultivation area of the Universidade de Ribeirão Preto - UNAERP, in Ribeirao Preto, state of Sao Paulo, Brazil from September/1997 to July/1998. The experiments were arranged in a randomized complete block with a factorial arrangement 2x3, design with 4 replications (32 plants each). The treatments consisted of the use of types of rhizomes utilized to proliferation (head and finger) and types of mulch (absent, grass and leaves/branches). This study investigated proliferation (61, 88 and 124 days after installation), length, shooting and number of leaves of the mother plant besides the number of leaves of the shoot (112, 146 and 233 days after installation), number of finger rhizomes and head rhizomes, fresh and dry biomass of rhizomes and the yield of essential oil (after harvest - July 1998). Obtained results showed a great influence of the type of rhizome used to proliferation. Head rhizomes produced, in weight, about 30% more, when compared to plants from finger rhizomes. Mulching almost duplicated rhizome productivity from 2338 kg.ha -1 of dry rhizomes to 4499 kg.ha -1, when rhizome used to proliferation was finger and from 3046 kg.ha -1 to 5943 kg.ha -1, when using head rhizomes. The yield of essential oil did not show any alteration, independently of the treatments realized.
Resumo:
The purpose of the present research was to evaluate the effect of plant growth regulators in biomass production and essential oil yield content in lemongrass (Cymbopogon citratus (DC.) Stapf), in different seasons. The experiment was conducted on São Manuel Experimental Farm, Faculdade de Ciências Agronômicas, UNESP - Botucatu. Which plants were randomly assigned into blocks to treatments with three repetitions. The treatments consisted of GA3 (50 and 100 mg L-1); Ethrel (100 and 200 mg L-1); CCC (500 and 1000 mg L-1); Alar 85 (1000 and 2000 mg L-1); Accel (20 and 40 mg 0L-1) and control. Four applications of plant growth regulators were realized every three months. After 40 days of each foliar spray, the plants were cut to determine the fresh weight and essential oil yield. The application of plant growth regulators did not increase the biomass production, showing difference among collect periods when the major production was detected at the fourth collect (summer). The greatest essential oil yield was found at the second collect (winter). In the present study, the used concentrations of plant growth regulators did not increase biomass neither essential oil yield.
Resumo:
The objective of this research was to investigate the potential of xylanase production by Aspergillus japonicus and to determine the effects of cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature for enzyme and biomass production was 25°C; however, the best carbon source for growth (determined by the Bioscreen C) did not turn out to be a good inducer of xylanase production. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran (without the addition of any other carbon source) using a spore concentration of 1 × 107 spores/mL (25°C, pH 5.0, 120 h). A. japonicus is a good xylanase producer under the conditions presented in these assays. © 2006 Academic Journals.
Resumo:
This paper evaluated the critical level, responsivity and boron use effciency on growth and the biomass production in six Eucalyptus grandis x Eucalyptus urophylla clones (Ca, Cb, Cc, Cd, Ce and Cf). An experiment was carried out in pots containing ground silicon, under greenhouse conditions using four boron rates per solution (0; 0.135; 0.27; 0.54 mg L -1 of B). The treatments were combined in a randomized block experimental design in a 4 × 6 factorial scheme with three replications. Plant height, stem diameter, dry matter production in the shoots of the plant and boron use effciency in the leaves, stem and total dry matter at the 8th month of age were evaluated. Due to boron fertilization, growth and shoot biomass were observed in the Eucalyptus plants after 240 days of being planted in pots. The increases in growth and biomass were 35 to 54% and 21 to 64%, respectively. The boron rates that promoted major growth of the plants were 0.33 to 0.44 mg L -1 of B and in this range the most effcient clone for dry matter production of leaves was Cf and the least effcient one to stem biomass production and the shoot biomass was Cd, no signifcant differences among other clones were observed. The critical level of boron in solution was 0.09 to 0.24 mg L -1 of B in the growth of the plants.
Resumo:
The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.
Resumo:
Upland rice (Oryza sativa L.) cultivation has been increasing in importance in Asia while water availability for irrigation has been decreasing because of rapid growth in industry and urban centers. Therefore, the development of technologies that increase upland rice yields under aerobic conditions, thereby saving water, would be an effective strategy to avoid a decrease in global rice grain production. The use of the no-tillage system (NTS) and cover crops that maintain soil moisture would prove advantageous in the move toward sustainable agriculture. However, upland rice develops better in plowed soil, and it has been reported that this crop does not perform well under the NTS. Therefore, the aim of this study was to investigate the effect of cover crops on upland rice grain yield and yield components sowed in a NTS. A field experiment was conducted during two growing seasons (2008-2009 and 2009-2010), and treatments consisted of growing rice under five cover crops in a NTS and two control treatments under the conventional tillage system (plowing once and disking twice). Treatments were carried out in a randomized block design with three replications. Our findings are as follows: On average, Brachiaria brizantha (12.32Mgha-1), Brachiaria ruziziensis (11.08Mgha-1) and Panicum maximum (11.62Mgha-1) had outstanding biomass production; however, these grasses provided the worst upland rice yields (2.30, 2.04, and 2.67Mgha-1, respectively) and are not recommended as cover crops before upland rice. Millet and fallow exhibited the fastest straw degradation (half-lives of 52 and 54 days, respectively), and millet exhibited the fastest nitrogen release (N half-life of 28 days). The use of a NTS was promising when millet was used as a cover crop; this allowed the highest upland rice yield (3.94Mgha-1) and did not statistically differ from plowed fallow (3.52Mgha-1). © 2012 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50 % of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27 % higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17 % lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The aim of this study was to evaluate the growth and yield of soybean cultivar M-8766 in consortium with Brachiaria brizantha. BRS Piata and Brachiaria ruziziensis at different densities and sowing dates. The experimental design was randomized blocks with treatments arranged in a factorial 2 × 2 × 3 with four replications. Used as factors grass species (Brachiaria brizantha Piata and Brachiaria ruziziensis BRS) intercropped with soybean M-8766, sowing dates (12 and 24 days after soybean emergence) and three seeding rates (0, 5, 10 kg ha-1 of seed). At 71 days after soybean emergence were evaluated plant height, stem diameter, dry mass of leaves, stems and shoots, and 4 months after sowing determined the weight of 100 grains and soybean yield. The results showed that when seeded at a density of 10 kg ha-1 at 12 and 24 DAE soy, Brachiaria brizantha. BRS Piata caused reduction in yield in the order of 6.71% and 3.03% respectively, while the Brachiaria ruziziensis was one that caused a greater reduction in productivity in the order of 13.42 and 16.23%, respectively, of these values expression when considering the price of soybean sack. B. ruziziensis expressed less competitive with soybean. However, the large biomass production of this grass provides deployment system till the next harvest.
Resumo:
Pós-graduação em Biotecnologia - IQ