990 resultados para Biomass, wet mass per area


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and distribution of the macrobenthic communities were studied in the southwestern Kara Sea. The material was collected in Baidaratskaya Bay in July 2007 and in a section running westward of the Yamal Peninsula in September 2007. The depths of the sampling stations ranged from 5 to 25 m in the Baidaratskaya Bay area and between 16 and 46 m in the Yamal section. A total of 212 benthic invertebrate species were recorded. In both areas, Bivalvia was the group with the highest biomass (54.88 g/m**2 in the Yamal section and 59.71 g/m**2 in the Baidaratskaya Bay area), while polychaetes were the group with the highest number of species (45 in the Yamal section and 64 the Baidaratskaya Bay area). Three major macrozoobenthic communities were recognized: the Astarte borealis community (20-46 m, the deepest sampling stations in both areas); the 'medium-depth' community (10-20 m, extremely mosaic, usually dominated by Serripes groenlandicus); and the Nephtys longosetosa community (depth smaller than 10 m, characterized by low biomass and the absence of large bivalves and echinoderms). The western Yamal shallow-water communities were shown to be generally similar to those of Baidaratskaya Bay. The comparison of these results with those of the benthos censuses performed in 1927-1945, 1975, and 1993 showed that the benthic communities in the southwestern Kara Sea remained relatively stable during the second half of the 20th century and the early 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

常绿阔叶林以其富饶的生物资源、丰富的生物多样性和巨大的生态与环境效益引起了人们越来越大的重视,它的研究已成为国际植被科学界关注的主题之一。我国分布着世界上面积最大的亚热带常绿阔叶林,在世界植被中具有重要地位,它的分布表现出明显的地带性差异,存在着多样的植物群系及其对应的气候特征。但是在植物功能性状领域,与全球范围其它生物群系相比,常绿阔叶林物种的研究较少,其功能性状间、功能性状与环境间的关系尚不清晰。 本研究以常绿阔叶林木本植物的当年生小枝为对象,试图从小枝水平上的生物量分配格局、叶片大小与数量的权衡关系、小枝茎的构型效应、叶片元素化学计量学,以及小枝大小的成本与效益分析等方面,较为系统地揭示小枝水平上的植物功能性状间及其与气候间的关系。因此,在华西雨屏带内部的不同纬度设置峨眉-青城-雷波-平武的温度梯度进行比较,并对有降水差异的川西南偏湿性(雷波)与偏干性常绿阔叶林(西昌)进行对比研究,同时在不同山体进行不同海拔梯度的比较研究。 本文主要研究结果如下: (1)小枝生物量分配格局叶水平上,叶片重-叶柄重(Y轴vs.X轴,下同)呈斜率小于1的异速生长关系,表明叶柄对叶内部的生物量分配影响显著。小枝水平上,叶和茎的生物量以及它们与小枝总生物量间基本呈等速生长关系,表明大的小枝或大叶物种不一定在叶生物量的分配上占优势。不同生活型间,在小枝或者茎的生物量一定时,常绿物种叶片的生物量比例较落叶物种稍高。与温度和水分较优越(峨眉及其低海拔)的生境相比,在相对低湿(螺髻)与低温(平武)的生境中的植物会减少对叶的投入而增加对支撑部分的投资比例。 (2)小枝叶片大小与数量的权衡无论是不同气候带还是不同生活型以及不同海拔梯度,叶片大小与出叶强度基本都是呈负的等速生长关系,表明了叶片大小-数量在小枝水平上的权衡。在不同气候梯度的对比中,叶片数量(出叶强度)一定时,高温和高水分生境(峨眉)比低温(平武)和低湿(螺髻山)生境中的物种的叶片大小(质量和面积)更大,表明不同生境的比较中,小的叶片可能具有较高的出叶强度和更高的适合度收益。“出叶强度优势”(Leafingintensitypremium)假说可能不适宜解释不同生境物种叶片大小差异。 (3)小枝茎的构型效应虽然茎长和茎径与叶片大小都呈正相关关系,与出叶强度都呈负相关关系,但茎长/茎径比与叶/茎生物量之比呈负相关关系;与叶片的大小呈负相关关系,与出叶强度呈正相关关系。这说明小枝构型能影响小枝叶/茎生物量分配和叶大小-数量的权衡关系。其影响机制可能是小枝内部的顶端优势。另外,茎长/茎径比在低湿和低温等不利生境中的植物中较高,而在降水和温度较适宜环境中较低。 (4)叶片C、N、P化学计量学N含量和P含量,C/N比和比叶重(LMA,leafmassperarea)呈正的等速生长关系,而N和LMA,P和LMA呈负的等速生长关系。在LMA一定时,C/N比随着生境胁迫压力的增加而降低,N、P含量随着生境压力的增加而增加。在P含量一定时,N含量随着生境压力的增加而降低,即N/P比在生境条件较优(峨眉及其低海拔)时较高。常绿和落叶植物叶片的N/P比没有差异,在LMA一定时,常绿植物的N、P含量较高、C/N比较低。总之,植物的C、N、P化学计量学特征受叶片属性如LMA与气候,及其相互作用的影响。 (5)小枝大小的代价与效益分析、TLA与小枝总重总叶面积(TLA,totalleafarea,Y轴,下同)与总叶重(X轴)均呈斜率小于1的异速生长关系,TLA与小枝横切面积呈斜率为1的等速生长关系。表明叶片面积的增加总是小于叶重和小枝总重的增加,随着小枝的增大,它的叶面积支撑效率下降。在热量和降水优越的生境(峨眉及其低海拔)中,相同小枝重或者相同茎横切面积的小枝,其叶面积支撑效率较低湿与低温环境下(螺髻山、平武及高海拔)的高。 总体上,本文初步研究了小枝水平上可能存在的以下三种权衡关系:叶-茎生物量分配权衡;叶片大小-数量的权衡;小枝茎长-茎径的权衡关系,以及气候要素等对这三种权衡关系的影响。在此基础上,我们还讨论了这些权衡关系的可能形成机制,及其与物种生态适应的联系。本研究丰富了生活史对策中关于权衡关系的研究内容,为我国常绿阔叶林功能生态学研究积累了材料。 Evergreen broad-leaved forests are attracting much more attention from vegetation ecologists than ever before because of their abundant nature resource and biological diversity, and also great ecological benefits. China has the largest distribution of subtropical evergreen broad-leaved forests (temperate rainforests) that are typical and representative in the world. The forests span over more than ten degrees in latitude and more than 30 degrees in longitude, providing an ideal place to study plant functional ecology, i.e., the climatic effect on plant functional traits and the relationship between the traits. However, relative to the other biomes, there are few studies addressing functional ecology of the plant species from subtropical evergreen broad-leaved forests. In this study, I focused on the leaf size-twig size spectrum of the woody species of subtropical evergreen broad-leaved forests in southwestern china. I collected data on leaf size and number, twig size in terms of both mass and volume, and stem architecture from five temperate mountains, and then I analyzed the relationships between leaf and stem biomass and between leaf size and number, the effect of stem length/diameter ratio on biomass allocation and on the relationship between leaf size and number, leaf C:N:P stoichiometry, and the twig efficiency of supporting leaf area in relation to twig size. I also addressed the climate effect on the spectrum. The temperature gradient from warm to cool sites was represented by Emei Mountain, Qingchengshan, Leibo, and Pingwu, and the rainfall gradient was assumed to emerge from the comparison between Leibo (High) and Luojishan (Low). In addition, altitudinal effects were analyzed with comparisons between low and high altitudes for each mountains. My main results are as follows. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to leaves or laminas was independent of twig mass. Petiole mass disproportionably increase with respect to lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. In addition, the investigated species tended to have a larger leaf and lamina mass, but a smaller stem mass at a given twig mass at favorable environments including warm and humid sites or at low altitude than unfavorable habitats, which might be due to the large requirements in physical support and transporting safety for the species living at unfavorable conditions. Moreover, the evergreen species invested more in leaves and laminas than the deciduous at given stem or twig biomass within any specified habitats. Negative, isometric scaling relationships between leaf number and size broadly existed in the species regardless of climate, altitude, and life forms, suggesting a leaf size/number trade-off within twigs. Along the climatic gradients, at given leaf number or leafing intensity, the leaves were larger in the favorable environments than the poor habitats. This suggested that the fitness benefit gained by small leaves could be larger than that with high leafing intensity in the stressful sites. I concluded that the “leafing intensity premium” hypothesis was not appropriate to interpreting between-habitat variation in leaf size. Both stem length and diameter were positively correlated to leaf size but negatively correlated to leafing intensity. The ratio of stem length to diameter was negatively correlated to leaf mass fraction, and it was negatively correlated to leaf size but positively correlated to leafing intensity. This suggested that the stem architecture influenced twig biomass allocation and the relationship between leaf size and number. The mechanism underlying the architectural effect might lie in the apical dominance within twig. Moreover, the ratio was greater in unfavorable habitats but smaller in favorable environments. Positive, isometric relationships were found between N and P contents per leaf mass, and between C/N ratio and leaf mass per area (LMA), but N and P contents scaled negatively to LMA. C/N ratio decreased but N and P increased with increasing habitat stress at a given LMA. N content declined with increasing habitat stress at given P content. These indicated that N/P and C/N were higher but LMA was lower in favorable habitats than in the other circumstances. The evergreen and deciduous species were non-heterogeneous in N/P, but the evergreen species have higher N and P contents and lower C/N than the deciduous ones. In general, C:N:P stoichiometry were related to both climatic conditions and other important functional traits like LMA. Total leaf area (TLA) allometricly scaled to leaf mass with a slope shallower than 1, similar to the relationship between TLA and total twig mass (leaf mass plus stem mass), suggesting that TLA failed to keep pace with the increase of leaf mass and twig size. However, TLA scaled isometricly to twig cross-sectional area. Thus, it could be inferred that the twig efficiency of displaying leaf area decreased with increasing twig size. In addition, the efficiency at a given twig size was large in favorable than unfavorable habitats. In general, in this preliminary study, I studied three tradeoff relationships within twigs, i.e., between leaf and stem biomass, between leaf number and size, and between stem length and diameter, as well as the climatic effect on the relationships. I discussed the mechanisms underlying the tradeoff relationships in view of biophysics and eco-physiology of plants. I believe that this study can serve as important materials advancing plant functional ecology of subtropical forest and that it will improve the understanding of life history strategies of plants from this particular biome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A descoberta e utilização do petróleo provocaram significativas mudanças na sociedade ao longo do tempo, sendo ele um dos mais importantes fatores de transformação socioambiental e cultural no mundo ao longo do ultimo século. Sua grande gama de possibilidades de utilização acabou criando um sistema de produção baseado em um único agente energético, principalmente nos países que não possuem recursos hídricos nem outras fontes renováveis. Porém, nas ultimas décadas do século passado, começaram a surgir inúmeras discussões sobre a necessidade de se alterar a composição da matriz energética global. Como resultados das preocupações quanto à escassez daquele recurso natural, vários pesquisadores direcionaram seus estudos para a busca de alternativas que pudessem de forma sustentável se prestar como substituto ao petróleo. Uma delas seria o uso de biomassa, de forma a aproveitar a capacidade das plantas em transformar a energia solar em carbohidratos. O Brasil, além de possuir uma das matrizes energéticas mais diversificadas e limpas do mundo, possui grande extensão de terras agricultáveis o que o coloca em lugar de destaque quanto ao potencial de produção de culturas agroenergéticas. Considerando as características da cana-de-açúcar e a sua adaptação a áreas de cultivo do Brasil e impulsionados pela demanda de produção de biomassa moderna, a ser aplicada em processos de transformação mais complexos e que possibilitem a obtenção de outros produtos além de açúcar, álcool e energia, estudou-se neste trabalho plantas de cana-de-açúcar melhoradas com a finalidade exclusiva de produzir biomassa moderna, a chamada “cana- energia”. Esta é uma planta que, contrariamente à tradicional cana-de-açúcar, melhorada para produzir sacarose, é direcionada para produzir fibra, e que, além disso, por possuir maior participação de espécies ancestrais de maior rusticidade, estão aptas a suportar condições ambientais mais estressantes. Os resultados obtidos demonstraram que os híbridos de cana-energia apresentam grande potencial de produção de biomassa e massa seca por área, a custos altamente competitivos considerando as análises comparativas de custo de produção de massa seca por área. Quanto a produção foi possível observar que além de ser mais produtiva em primeiro corte, nos resultados de colheita de soqueira (segundo corte), o melhor híbrido de cana- energia chegou a produzir uma vez e meia mais massa seca que a cana-de-açúcar tradicional, e apresentou maiores produtividades que outras culturas energéticas tais como o eucalipto e o capim-elefante, sendo que, considerando as produtividades médias observadas, a partir do terceiro corte com estes níveis de produtividade, a cana-energia passa a ser a matéria prima de mais baixo custo de produção de massa seca por área, denotando o seu alto potencial como matéria prima para a produção de bioenergia. No Zoneamento agroecológico realizado para a cana energia foi possível identificar 32,3 milhões de hectares de áreas de produção agrícola marginais aptas ao cultivo deste material, sendo que de acordo com os resultados do zoneamento agrícola e as características das regiões em estudos, identifica-se que deste total, pode-se considerar que os materiais que se destacaram em produtividade neste estudo, apresentam boas condições de ocupar uma área de 2,0 a 8,0 milhões de hectares.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cruise 1991-06 conductucted covering TEEZ with a large cruise presents a dataset of macro gelatinous biomass and abundance in the Southern Black Sea in June 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two shelf communities from the central part off the California Peninsula are described. The community of Amphiodia urtica - Nephtys ferruginea develops in the central part of the shelf within the depth range 95-105 m. The community of Nephtys ferruginea - Amphiura acrystata develops on the shelf edge at depth 110 m. Biomasses of both communities are very low (about 10 g/m**2). Species richness of the shelf community is high; more than 60 species occur in samples (43-51 species per a community). Various echinoderms and some other groups are abundant on the Californian shelf; these groups are absent in shelf areas of Peruvian and Benguela upwellings. Species structures of the communities were analyzed; the communities were shown to consist of coexisting, but not interacting guilds; this indicates that the communities are undersaturated with individuals. At the same time values of ABC-indices indicate that the communities are stable. We suggest that in this case adaptation to unfavorable but stable environment is observed (selection of species-stressolarents). An explanation seems to lie in the penetrating type of the upwelling in the Californian upwelling zone. Low biomass values seem to result from mass development of necto-benthic carnivorous crustaceans-galateids Pleuroncodes planiceps.