994 resultados para Biology, Neuroscience|Psychology, Psychobiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ca2+-binding protein calmodulin (CaM) is a key transducer of Ca2+ oscillations by virtue of its ability to bind Ca 2+ selectively and then interact specifically with a large number of downstream enzymes and proteins. It remains unclear whether Ca2+ -dependent signaling alone can activate the full range of Ca 2+/CaM regulated processes or whether other regulatory schemes in the cell exist that allow specific targeting of CaM to subsets of Ca 2+/CaM binding sites or regions of the cell. Here we investigate the possibility that alterations of the availability of CaM may serve as a potential cellular mechanism for regulating the activation of CaM-dependent targets. By utilizing sensitive optical techniques with high spatial and temporal resolution, we examine the intracellular dynamics of CaM signaling at a resolution previously unattainable. After optimizing and characterizing both the optical methods and fluorescently labeled probes for intracellular measurements, the diffusion of CaM in the cytoplasm of HEK293 cells was analyzed. It was discovered that the diffusion characteristics of CaM are similar to that of a comparably sized inert molecule. Independent manipulation of experimental parameters, including increases in total concentrations of CaM and intracellular Ca2+ levels, did not change the diffusion of CaM in the cytoplasm. However, changes in diffusion were seen when the concentration of Ca2+/CaM-binding targets was increased in conjunction with elevated Ca2+. This indicates that CaM is not normally limiting for the activation of Ca 2+/CaM-dependent enzymes in HEK293 cells but reveals that the ratio of CaM to CaM-dependent targets is a potential mechanism for changing CaM availability. Next we considered whether cellular compartmentalization may act to regulate concentrations of available Ca2+/CaM in hippocampal neurons. We discovered changes in diffusion parameters of CaM under elevated Ca2+ conditions in the soma, neurite and nucleus which suggest that either the composition of cytoplasm is different in these compartments and/or they are composed of unique families of CaM-binding proteins. Finally, we return to the HEK293 cell and for the first time directly show the intracellular binding of CaM and CaMKII, an important target for CaM critical for neuronal function and plasticity. Furthermore, we analyzed the complex binding stoichiometry of this molecular interaction in the basal, activated and autophosphorylated states of CaMKII and determined the impact of this binding on CaM availability in the cell. Overall these results demonstrate that regulation of CaM availability is a viable cellular mechanism for regulating the output of CaM-dependent processes and that this process is tuned to the specific functional needs of a particular cell type and subcellular compartment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficits in social cognition are prominent symptoms of many human psychiatric disorders, but the origin of such deficits remains largely unknown. To further current knowledge regarding the neural network mediating social cognition, the present research program investigated the individual contributions of two temporal lobe structures, the amygdala and hippocampal formation, and one frontal lobe region, the orbital frontal cortex (Areas 11 and 13), to primate social cognition. Based on previous research, we hypothesized that the amygdala, hippocampal formation and orbital frontal cortex contribute significantly to the formation of new social relationships, but less to the maintenance of familiar ones. ^ Thirty-six male rhesus macaques (Macaca mulatta) served as subjects, and were divided into four experimental groups: Neurotoxic amygdala lesion (A-ibo, n = 9), neurotoxic or aspiration orbital frontal cortex lesion (O, n = 9), neurotoxic hippocampal formation lesion (H-ibo, n = 9) or sham-operated control (C, n = 9). Six social groups (tetrads) were created, each containing one member from each experimental group. The effect of lesion on established social relationships was assessed during pre- and post-surgical unrestrained social interactions, whereas the effect of lesion on the formation of new relationships was assessed during an additional phase of post-surgical testing with shuffled tetrad membership. Results indicated that these three neural structures each contribute significantly to both the formation and maintenance of social relationships. Furthermore, the amygdala appears to primarily mediate normal responses to threatening social signals, whereas the orbital frontal cortex plays a more global role in social cognition by mediating responses to both threatening and affiliative social signals. By contrast, the hippocampal formation seems to contribute to social cognition indirectly by providing access to previous experience during social judgments. ^ These conclusions were further investigated with three experiments that measured behavioral and physiological (stress hormone) reactivity to threatening stimuli, and three additional experiments that measured subjects' ability to flexibly alter behavioral responses depending on the incentive value of a food reinforcer. Data from these six experiments further confirmed and strengthened the three conclusions originating from the social behavior experiments and, when combined with the current literature, helped to formulate a simple, but testable, theoretical model of primate social cognition. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal outgrowth has been proposed in many systems as a mechanism underlying memory storage. For example, sensory neuron outgrowth is widely accepted as an underlying mechanism of long-term sensitization of defensive withdrawal reflexes in Aplysia. The hypothesis is that learning leads to outgrowth and consequently to the formation of new synapses, which in turn strengthen the neural circuit underlying the behavior. However, key experiments to test this hypothesis have never been performed. ^ Four days of sensitization training leads to outgrowth of siphon sensory neurons mediating the siphon-gill withdrawal response in Aplysia . We found that a similar training protocol produced robust outgrowth in tail sensory neurons mediating the tail siphon withdrawal reflex. In contrast, 1 day of training, which effectively induces long-term behavioral sensitization and synaptic facilitation, was not associated with neuronal outgrowth. Further examination of the effect of behavioral training protocols on sensory neuron outgrowth indicated that this structural modification is associated only with the most persistent forms of sensitization, and that the induction of these changes is dependent on the spacing of the training trials over multiple days. Therefore, we suggest that neuronal outgrowth is not a universal mechanism underlying long-term sensitization, but is involved only in the most persistent forms of the memory. ^ Sensory neuron outgrowth presumably contributes to long-term sensitization through formation of new synapses with follower motor neurons, but this hypothesis has never been directly tested. The contribution of outgrowth to long-term sensitization was assessed using confocal microscopy to examine sites of contact between physiologically connected pairs of sensory and motor neurons. Following 4 days of training, the strength of both the behavior and sensorimotor synapse and the number of appositions with follower neurons was enhanced only on the trained side of the animal. In contrast, outgrowth was induced on both sides of the animal, indicating that although sensory neuron outgrowth does appear to contribute to sensitization through the formation of new synapses, outgrowth alone is not sufficient to account for the effects of sensitization. This indicates that key regulatory steps are downstream from outgrowth, possibly in the targeting of new processes and activation of new synapses. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repeated treatment with psychostimulants produces behavioral sensitization that results in increased locomotor responses so that lower drug doses are required to obtain the same effect and cross-sensitization with other stimulants. Methylphenidate (MPD; Ritalin) is most frequently prescribed to treat children having attention deficit hyperactivity disorder (ADHD), a syndrome with onset in childhood characterized by high levels of inattention, hyperactivity, and impulsivity. Little is known of the consequences involving the long-term use of MPD as treatment for ADHD. This study investigates if there are age, genetic/strain, and sex differences in the prolonged exposure to MPD and cross-sensitization with amphetamine. The objective is to determine whether (a) early exposure to MPD in adolescent rats increases their sensitivity to the drug when they are adult rats, (b) there are strain and sex differences in the response to MPD, and (c) treatment with MPD in adolescent and adult Wistar-Kyoto (WKY), spontaneously hyperactive/hypertensive rat (SHR), and Sprague-Dawley (SD) rat results in cross-sensitization with amphetamine. The hypotheses are that (1) early exposure to MPD in adolescent rats increases their sensitivity to the drug when they reach adulthood, and that this hypersensitivity is dose-, strain-, and sex-dependent and (2) adult rats treated with MPD as adolescents will show a greater cross-sensitization to amphetamine than those adult rats treated with saline as adolescents, and that this cross-sensitization is dose-, strain-, and sex-dependent. The study consists of recording and evaluating locomotor activity of female and male WKY, SHR, and SD rats before and after acute and repeated MPD administration when these rats are young and as adults follows by an amphetamine treatment. Results showed that repeated treatment with MPD elicited behavioral sensitization and cross-sensitization with amphetamine in these animals. The study also found that strain and sex play a crucial role in the differentiated sensitivity to the acute and chronic effects of MPD. The development of behavioral sensitization and cross-sensitization are also dependent on the dose of MPD and the age of the rat. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The POU domain transcription factor Brn3b/POU4F2 plays a critical role regulating gene expression in mouse retinal ganglion cells (RGCs). Previous investigations have shown that Brn3b is not required for initial cell fate specification or migration; however, it is essential for normal RGC differentiation. In contrast to wild type axons, the mutant neurites were phenotypically different: shorter, rougher, disorganized, and poorly fasciculated. Wild type axons stained intensely with axon specific marker tau-1, while mutant projections were weakly stained and the mutant projections showed strong labeling with dendrite specific marker MAP2. Brn-3b mutant axonal projections contained more microtubules and fewer neurofilaments, a dendritic characteristic, than the wild type. The mutant neurites also exhibited significantly weaker staining of neurofilament low-molecular-weight (NF-L) in the axon when compared to the wild type, and NF-L accumulation in the neuron cell body. The absence of Brn-3b results in an inability to form normal axons and enhanced apoptosis in RGCs, suggesting that Brn-3b may control a set of genes involved in axon formation. ^ Brn3b contains several distinct sequence motifs: a glycine/serine rich region, two histidine rich regions, and a fifteen amino acid conserved sequence shared by all Brn3 family members in the N-terminus and a POU specific and POU homeodomain in the C-terminus. Brn3b activates a Luciferase reporter over 25 fold in cell culture when binding to native brn3 binding sites upstream of a minimal promoter. When fused to the Gal4 DNA Binding domain (DBD) and driven by either a strong (CMV) or weaker (pAHD) promoter, the N-terminal of Brn3b is capable of similar activation when binding to Gal4 UAS sites, indicating a presumptive activator of transcription. Both full length Brn3b or the C-terminus fused to the Gal4DBD and driven by pCMV repressed a Luciferase reporter downstream of UAS binding sites. Lower levels of expression of the fusion protein driven by pADH resulted in an alleviation of repression. This repression appears to be a limitation of this system of transcriptional analysis and a potential pitfall in conventional pCMV based transfection assays. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to associate a predictive stimulus with a subsequent salient event (i.e., classical conditioning) and the ability to associate an expressed behavior with the consequences (i.e., operant conditioning) allow for a predictive understanding of a changing environment. Although they are operationally distinct, there has been considerable debate whether at some fundamental level classical and operant conditioning are mechanistically distinct or similar. Feeding behavior of Aplysia (i.e., biting) was chosen as the model system and was successfully conditioned with appetitive forms of both operant and classical conditioning. The neuronal circuitry responsible for feeding is well understood and is suitable for cellular analyses, thus providing for a mechanistic comparison between these two forms of associative learning. ^ Neuron B51 is part of the feeding circuitry of Aplysia and is critical for the expression of ingestive behaviors. B51 also is a locus of plasticity following both operant and classical conditioning. Both in vivo and in vitro operant conditioning increased the input resistance and the excitability of B51. No pairing-specific changes in the input resistance were observed following both in vivo and in vitro classical conditioning. However, classical conditioning decreased the excitability of B51. Thus, both operant and classical conditioning modified the threshold level for activation of neuron B51, but in opposite directions, revealing key differences in the cellular mechanisms underlying these two forms of associative learning. ^ Next, the cellular mechanisms underlying operant conditioning were investigated in more detail using a single-cell analogue. The single-cell analogue successfully recapitulated the previous in vivo and in vitro operant conditioning results by increasing the input resistance and the excitability of B51. Both PKA and PKC were necessary for operant conditioning. Dopamine appears to be the transmitter mediating the reinforcement signal in this form of conditioning. A D1 dopamine receptor antibody revealed that the D1receptor localizes to the axon hillock, which is also the region that gives the strongest response when iontophoresing dopamine. ^ The studies presented herein, thus, provide for a greater understanding of the mechanisms underlying both of these forms of associative learning and demonstrate that they likely operate through distinct cellular mechanisms. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many neurons in the mammalian retina are electrically coupled by intercellular channels or gap junctions, which are assembled from a family of proteins called connexins. Numerous studies indicate that gap junctions differ in properties such as conductance and tracer permeability. For example, A-type horizontal cell gap junctions are permeable to Lucifer Yellow, but B-type horizontal cell gap junctions are not. This suggests the two cell types express different connexins. My hypothesis is that multiple neuronal connexins are expressed in the mammalian retina in a cell type specific manner. Immunohistochemical techniques and confocal microscopy were used to localize certain connexins within well-defined neuronal circuits. The results of this study can be summarized as follows: AII amacrine cells, which receive direct input from rod bipolar cells, are well-coupled to neighboring AIIs. In addition, AII amacrine cells also form gap junctions with ON cone bipolar cells. This is a complex heterocellular network. In both rabbit and primate retina, connexin36 occurs at dendritic crossings in the AII matrix as well as between AIIs and ON cone bipolar cells. Coupling in the AII network is thought to reduce noise in the rod pathway while AII/bipolar gap junctions are required for the transmission of rod signals to ON ganglion cells. In the outer plexiform layer, connexin36 forms gap junctions between cones and between rods and cones via cone telodendria. Cone to cone coupling is thought to reduce noise and is partly color selective. Rod to cone coupling forms an alternative rod pathway thought to operate at intermediate light intensity. A-type horizontal cells in the rabbit retina are strongly coupled via massive low resistance gap junctions composed from Cx50. Coupling dramatically extends the receptive field of horizontal cells and the modulation of coupling is thought to change the strength of the feedback signal from horizontal cells to cones. Finally, there are other coupled networks, such as B-type horizontal cells and S1/S2 amacrine cells, which do not use either connexin36 or Cx50. These results confirm the hypothesis that multiple neuronal connexins are expressed in the mammalian retina and these connexins are localized to particular retinal circuits. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations disabling the retinoblastoma (Rb) pathway are among the most common in human cancers, including brain cancer. These mutations promote tumor development through deregulated control of the E2F family of transcription factors. E2F1 belongs to a class of E2F's identified as transcriptional activators and involved in the G1/S phase transition of the cell. However, E2F-1 presents with a paradox as it is considered to have membership in two gene classes, functioning as both an oncogene and a tumor suppressor. This unusual trait generates a degree of uncertainty on the role that E2F1 plays in the development or maintenance of any given tumor. Here we show that E2F1 functions as an oncogene in brain tumors through the generation of mice engineered to overexpress E2F1 specifically within glial cells and neuronal progenitors as directed by the GFAP promoter. Mice carrying the transgene develop with high penetrance a phenotype characterized by neurological deficits including paresia, ataxia, head tilt and seizures. MRI imagining of the tgE2F1 mice reveals a low incidence of mild hydrocephalus, and most notably, histological analysis demonstrates that 25% of tgE2F1 mice present with the spontaneous formation of malignant brain tumors. Overall these neoplasms show histological features from a wide range of aggressive brain cancers including medulloblastoma, choroid plexus carcinoma, primary neuroectodermic tumor and malignant gliomas. Isolation and characterization of astrocytes from the tgE2F1 animal reveals a highly proliferative population of cells with 55% ± 2.5 of the tgE2F1astrocytes, 35% ± 3.4 normal mouse astrocytes in S-phase and the acquired capacity to grow in anchorage independent conditions. Additionally tgE2F1 astrocytes show an aberrant phenotype with random chromosomal fusions and nearly all cells demonstrating polyploidy. Taken together, this model forces a comparison to human brain tumor formation. Mouse age as related to tumoral mimics the human scenario with juvenile tgE2F1 mice presenting embryonal tumors typically identified in children, and older tgE2F1 mice demonstrating gliomas. In this regard, this study suggests a global role for E2F1 in the formation and maintenance of multilineage brain tumors, irrefutably establishing E2F1 as an oncogene in the brain. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterosynaptic plasticity has received considerable attention as a means to induce and maintain cell-wide, as opposed to synapse-specific, learning-related modifications. Modulatory neurotransmitters are thought to provide the attentional and motivational state for memory formation. However, the cellular and molecular mechanisms mediating the effects of most of these modulators on synaptic plasticity and learning remain unclear. A well established system for the study of heterosynaptic plasticity is the Aplysia sensorimotor synapse, which is subject regulation by at least two neuromodulators, serotonin (5-HT) and FMRFa. ^ 5-HT engages multiple second messenger cascades to induce short- and long-term facilitation (STF and LTF, respectively) of synaptic transmission. One mechanism proposed to be involved in STF is mobilization of synaptic vesicles from a storage pool to a releasable pool. To investigate this hypothesis, we examined the involvement of the protein synapsin, a central element in the regulation of the storage pool of vesicles in nerve terminals, in STF. 5-HT induced phosphorylation of synapsin and modified its subcellular distribution via PKA and p42/44 MAPK. Electrophysiological experiments and computer simulations suggested that synapsin can support heterosynaptic plasticity by regulating vesicle mobilization. ^ FMRFa induce short- and long-term synaptic depression in Aplysia . Long-term depression (LTD) correlates with morphological changes, the mechanisms of which remain elusive. LTD is also transcription- and translation-dependent, but little is known about the genes expressed and their regulation. We investigated the role of protein degradation via the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by the transcription factor CREB2, which is generally regarded as a transcription repressor. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions. ^ These and additional studies on the interaction of the 5-HT and FMRFa-activated pathways suggest that different neuromodulators, by activating several and sometimes overlapping signaling cascades, can exercise bidirectional control on synaptic gain and information processing.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opioids remain the drugs of choice in chronic pain treatment, but opioid tolerance, defined as a decrease in analgesic effect after prolonged or repeated use, dramatically limits their clinical utility. Opioid tolerance has classically been studied by implanting spinal catheters in animals for drug administration. This procedure has significant morbidity and mortality, as well as causing an inflammatory response which decreases the potency of opioid analgesia and possibly affects tolerance development. Therefore, we developed and validated a new method, intermittent lumbar puncture (Dautzenberg et al.), for the study of opioid analgesia and tolerance. Using this method, opioid tolerance was reliably induced without detectable morbidity. The dose of morphine needed to induce analgesia and tolerance using this method was about 100-fold lower than that required when using an intrathecal catheter. Only slight inflammation was found at the injection site, dissipated within seven mm. ^ DAMGO, an opioid μ receptor agonist, has been reported to inhibit morphine tolerance, but results from different studies are inconclusive. We evaluated the effect of DAMGO on morphine tolerance using our newly-developed ILP method, as well as other intrathecal catheter paradigms. We found that co-administration of sub-analgesic DAMGO with morphine using ILP did not inhibit morphine tolerance, but instead blocked the analgesic effects of morphine. Tolerance to morphine still developed. Tolerance to morphine can only be blocked by sub-analgesic dose of DAMGO when administered in a lumbar catheter, but not in cervical catheter settings. ^ Finally, we evaluated the effects of Gabapentin (GBP) on analgesia and morphine tolerance. We demonstrated that GBP enhanced analgesia mediated by both subanalgesic and analgesic doses of morphine although GBP itself was not analgesic. GBP increased potency and efficacy of morphine. GBP inhibited the expression, but not the development, of morphine tolerance. GBP blocked tolerance to analgesic morphine but not to subanalgesic morphine. GBP reversed the expression of morphine tolerance even after tolerance was established. These studies may begin to provide new insights into mechanisms of morphine tolerance development and improve clinical chronic pain management. ^