986 resultados para Biology, Neuroscience|Biology, Animal Physiology|Biophysics, Medical
Resumo:
The bile pigment bilirubin-IXα is the degradative product of heme, distributed among mammals and some other vertebrates. It can be recognized as the pigment responsible for the yellow color of jaundice and healing bruises. In this paper we present the first example of the isolation of bilirubin in plants. The compound was isolated from the brilliant orange-colored arils of Strelitzia nicolai, the white bird of paradise tree, and characterized by HPLC−ESMS, UV−visible, 1H NMR, and 13C NMR spectroscopy, as well as comparison with an authentic standard. This discovery indicates that plant cyclic tetrapyrroles may undergo degradation by a previously unknown pathway. Preliminary analyses of related plants, including S. reginae, the bird of paradise, also revealed bilirubin in the arils and flowers, indicating that the occurrence of bilirubin is not limited to a single species or tissue type.
Resumo:
Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.
Resumo:
Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes.
Resumo:
Ionizing radiation OR) imposes risks to human health and the environment. IR at low doses and low (lose rates has the potency to initiate carcinogenesis. Genotoxic environmental agents such as IR trigger a cascade of signal transduction pathways for cellular protection. In this study, using cDNA microarray technique, we monitored the gene expression profiles in lymphocytes derived from radiation-ex posed individuals (radiation workers). Physical dosimetry records on these patients indicated that the absorbed dose ranged from 0.696 to 39.088 mSv. Gene expression analysis revealed statistically significant transcriptional changes in a total of 78 genes (21 up-regulated and 57 clown-regulated) involved in several biological processes such as ubiquitin cycle (UHRF2 and PIAS1), DNA repair (LIG3, XPA, ERCC5, RAD52, DCLRE1C), cell cycle regulation/proliferation (RHOA, CABLES2, TGFB2, IL16), and stress response (GSTP1, PPP2R5A, DUSP22). Some of the genes that showed altered expression profiles in this study call be used as biomarkers for monitoring the chronic low level exposure in humans. Additionally, alterations in gene expression patterns observed in chronically exposed radiation workers reinforces the need for defining the effective radiation dose that causes immediate genetic damage as well as the long-term effects on genomic instability, including cancer.
Resumo:
An investigation was carried out to study the potential use of the angular distribution of scattered photons by human breast samples for a rapid identification of neoplasias of breast tissues. This technique has possible applications as diagnostic aid for breast cancer. In this work, a commercial powder diffractometer was used to obtain the scattering profiles from breast tissues histopathologically classified as normal breast tissues, fibroadenomas (benign breast diseases) and carcinomas (malignant breast diseases), in the interval 0.02 angstrom(-1) < x < 0.62 angstrom(-1). The experimental methods and data corrections are discussed in detail, and they included background subtraction, polarization, self-attenuation and geometric effects. The validation of the experimental procedure was achieved through an analysis of water sample. The results showed that the scattering profile is a unique impression of each type of tissue, being correlated with their microscopic morphological features. Multivariate analysis was applied to these profiles in order to verify if the information carried by these scattering profiles allow the differentiation between normal, benign and malignant breast tissues. The statistical analysis results showed that a correct identification of 75% of the analyzed samples is accomplished. The values of sensibility and specificity of this method in correctly differentiating between normal and neoplastic samples were 95.6% and 82.3%, respectively, while the values for differentiation between benign and malignant neoplasias were 78.6% and 62.5%. These initial results indicate the feasible use of commercial powder diffractometer to provide a rapid diagnostic with a high sensitivity.
Resumo:
The physiological responses of sugarcane (Succharion officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 It and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 It of exposure, which became more pronounced after 48 It, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing YAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and MnSOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress. (c) 2007 Elsevier Inc. All rights reserved.
Adenanthera pavonina TRYPSIN INHIBITOR RETARD GROWTH OF Anagasta kuehniella (LEPIDOPTERA: PYRALIDAE)
Resumo:
Anagasta kuehniella is a polyphagous pest that feeds on a wide variety of stored products. The possible roles suggested for seed proteinase inhibitors include the function as a part of the plant defensive system against pest via inhibition of their proteolytic enzymes. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seed and was tested for insect growth regulatory effect. The chronic ingestion of ApTI did result in a significant reduction in larval survival and weight. Larval and pupal developmental time of larvae fed on ApTI diet at 1% was significantly longer; the larval period was extended by 5 days and pupal period was 10 days longer, therefore delaying by up to 20 days and resulting in a prolonged period of development from larva to adult. As a result, the ApTI diet emergence rate was only 28% while the emergence rate of control larvae was 80%. The percentage of surviving adults (%S) decreased to 62%. The fourth instar larvae reared on a diet containing 1% ApTI showed a decrease in tryptic activity of gut and that no novel proteolytic form resistant to ApTI was induced. In addition, the tryptic activity in ApTI -fed larvae was sensitive to ApTI. These results suggest that ApTI have a potential antimetabolic effect when ingested by A. kuehniella. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.
Resumo:
Snake Venom L-amino acid oxidases (LAAOs E.C. 1.4.3.2) are flavoenzymes broadly found in various snake venom compositions. LAAOs have become an attractive subject for molecular biology, biochemistry, physiology and medicine due to their actions on various cells and biological effects on platelets, apoptosis, hemorrhage and others. In this review we try to summarize some of these reports, with special emphasis on apoptosis, anti-protozoa, bactericidal and anti-viral activities.
Resumo:
A proteomics approach was used to identify the proteins potentially implicated in the cellular response concomitant with elevated production levels of human growth hormone in a recombinant Chinese hamster ovary (CHO) cell line following exposure to 0.5 mM butyrate and 80 muM zinc sulphate in the production media. This involved incorporation of two-dimensional (2-D) gel electrophoresis and protein identification by a combination of N-terminal sequencing, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry, amino acid analysis and cross species database matching. From these identifications a CHO 2-D reference,map and annotated database have been established. Metabolic labelling and subsequent autoradiography showed the induction of a number of cellular proteins in response to the media additives butyrate and zinc sulphate. These were identified as GRP75, enolase and thioredoxin. The chaperone proteins GRP78, HSP90, GRP94 and HSP70 were not up-regulated under these conditions.
Resumo:
Insects are important vectors of diseases with remarkable immune defense capabilities. Hymenopteran endoparasitoids are adapted to overcome the host defense system and, therefore, are useful sources of immune-suppressing proteins. Not much is known about venom proteins in endoparasitoids, especially those that have a functional relationship with polydnaviruses (PDVs). Here, we describe the isolation and characterization of a small venom protein (Vn4.6) from an endoparositoid, Cotesia rubecula, which interferes with the activation of the host hemolymph prophenoloxidose. The coding region for Vn4.6 is located upstream in the opposite direction of a gene coding for a C rubecula PDV-protein (Crp32). Arch. Insect Biochem. Physiol. 53:92-100, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.
Resumo:
Dendritic cells (DC) are the potent antigen presenting cells which modulate T cell responses to self or non-self antigens. DC play a significant role in the pathogenesis of autoimmune diseases, inflammation and infection, but also in the maintenance of tolerance. NF-kappaB, particularly RelB is a crucial pathway for myeloid DC differentiation and functional maturation. While the current paradigm is that mature, nuclear RelB+ DC prime T cells for immunity/autoimmunity and immature DC for tolerance, RelB-deficient mice paradoxically develop generalised systemic autoimmune inflammatory disease with myelopoiesis and splenomegaly. Previous studies suggested abnormal DC differentiation in healthy relatives of type 1 diabetes (t1dm) patients. Therefore, we compared NF- kB activation in monocyte-derived DC from t1dm and non-t1dm controls in response to LPS. While resting DC appeared normal, DC from 6 out of 7 t1dm patients but no t2dm or rheumatoid arthritis patients failed to translocate NF- kB subunits to the nucleus in response to LPS, along with a failure to up-regulate expression of cell surface CD40 and MHC class I. NF- kB subunit mRNA increased normally in t1dm DC after LPS. Both the classical or non-canonical NF- kB pathways were affected as both TNF-a and CD40 stimulation led to a similarly abnormal NF- kB response. In contrast, expression of phosphorylated p38 MAPK and pro-inflammatory cytokine production was intact. These abnormalities in NF- kB activation appear to be generally and specifically applicable at a post-translational level in t1dm, and have the capacity to profoundly influence immunoregulation in affected individuals.