980 resultados para Biology, Molecular|Biology, Neuroscience|Biology, Cell|Chemistry, Biochemistry
Resumo:
La neurogenèse est présente, dans le cerveau adulte, dans la zone sous-ventriculaire (ZSV) encadrant les ventricules latéraux et dans le gyrus dentelé (GD) de l’hippocampe, permettant l’apprentissage, la mémoire et la fonction olfactive. Ces micro-environnements possèdent des signaux contrôlant l’auto-renouvellement des cellules souches neurales (CSN), leur prolifération, leur destin et leur différenciation. Or, lors du vieillissement, les capacités régénératives et homéostatiques et la neurogenèse déclinent. Les patients atteints de la maladie d’Alzheimer (MA), comme le modèle animal reproduisant cette maladie (3xTg-AD), montrent une accélération des phénotypes liés au vieillissement dont une diminution de la neurogenèse. Notre hypothèse est que la découverte des mécanismes affectant la neurogenèse, lors du vieillissement et de la MA, pourrait fournir de nouvelles cibles thérapeutiques pour prévenir le déclin cognitif. Les études sur l’âge d’apparition et les mécanismes altérant la neurogenèse dans la MA sont contrastées et nous ont guidé vers deux études. L’examen des changements dans les étapes de la neurogenèse lors du vieillissement et du développement de la neuropathologie. Nous avons étudié la ZSV, les bulbes olfactifs et le GD de souris femelles de 11 et 18 mois, et l’apparition des deux pathologies associées à la MA : les plaques amyloïdes et les enchevêtrements neurofibrillaires. Nous avons découvert que les souris 3xTg-AD possèdent moins de cellules en prolifération, de progéniteurs et de neuroblastes, induisant une diminution de l’intégration de nouvelles cellules dans le GD et les bulbes olfactifs. Notons que le taux de neurogenèse chez ces souris de 11 mois est similaire à celui des souris de phénotype sauvage de 18 mois, indiquant une accélération des changements liés au vieillissement dans la MA. Dans la ZSV, nous avons aussi démontré une accumulation de gouttelettes lipidiques, suggérant des changements dans l’organisation et le métabolisme de la niche. Enfin, nous avons démontré que le déficit de la neurogenèse apparait lors des premières étapes de la MA, avant l’apparition des plaques amyloïdes et des enchevêtrements neurofibrillaires. A l’examen des mécanismes inhibant la neurogenèse lors de la MA, nous voyons que chez des souris de 5 mois, le déficit de la neurogenèse dans la ZSV et le GD est corrélé avec l’accumulation de lipides, qui coïncide avec l’apparition du déclin cognitif. Nous avons aussi découvert que dans le cerveau humain de patients atteints de la MA et dans les 3xTg-AD, des gouttelettes lipidiques s’accumulaient dans les cellules épendymaires, représentant le principal soutien des CSN de la niche. Ces lipides sont des triglycérides enrichis en acide oléique qui proviennent de la niche et pas d’une défaillance du système périphérique. De plus, l’infusion locale d’acide oléique chez des souris de phénotype sauvage permet de reproduire l’accumulation de triglycérides dans les cellules épendymaires, comme dans la MA. Ces gouttelettes induisent un dérèglement de la voie de signalisation Akt-FoxO3 dans les CSN, menant à l’inhibition de leur activation in vitro et in vivo. Ces résultats permettent une meilleure compréhension de la régulation de la neurogenèse par le métabolisme lipidique. Nous avons démontré un nouveau mécanisme par lequel l’accumulation des lipides dans la ZSV induit une inhibition des capacités de prolifération et de régénération des CSN lors de la MA. Les travaux futurs permettront de comprendre comment et pourquoi le métabolisme lipidique du cerveau est altéré dans la MA, ce qui pourrait offrir de nouvelles voies thérapeutiques pour la prévention et la régénération.
Resumo:
The study revealed the potential of marine yeasts as a source of single cell protein and immunostimulant for prawns. Prawns fed with the selected marine yeasts were showing more growth compared to the control feed and commercial feed. Yeasts being rich with proteins, vitamins and carbohydrates serve as a growth promoter for prawns as being evidenced in this study. The better performance of marine yeasts, D. hansenii S8 and S100 and C. tropicalis S186 compared to S. cerevisiae S36 as a feed supplement is worth investigating. Besides being a rich nutritional source, yeasts act as immunostimulants by virtue of its high carbohydrate (Beta, 1-3 glucan) and RNA content. Beta, 1-3 glucan, a cell wall component of yeasts /fungi is the most commonly used immunostimulant in aquaculture. The present study shows that even the whole cell yeast could serve as a good immunostimulant when supplied through diet. Extraction of Beta-1,3 glucan results in the removal of nutrients like proteins, vitamins etc. from the cell biomass.Utilization of the yeast biomass as such in the diet would help perform a dual role as nutritional component and immunostimulant for aquaculture applications.
Resumo:
The main source of protein for human and animal consumption is from the agricultural sector, where the production is vulnerable to diseases, fluctuations in climatic conditions and deteriorating hydrological conditions due to water pollution. Therefore Single Cell Protein (SCP) production has evolved as an excellent alternative. Among all sources of microbial protein, yeast has attained global acceptability and has been preferred for SCP production. The screening and evaluation of nutritional and other culture variables of microorganisms are very important in the development of a bioprocess for SCP production. The application of statistical experimental design in bioprocess development can result in improved product yields, reduced process variability, closer confirmation of the output response to target requirements and reduced development time and overall cost.The present work was undertaken to develop a bioprocess technology for the mass production of a marine yeast, Candida sp.S27. Yeasts isolated from the offshore waters of the South west coast of India and maintained in the Microbiology Laboratory were subjected to various tests for the selection of a potent strain for biomass production. The selected marine yeast was identified based on ITS sequencing. Biochemical/nutritional characterization of Candida sp.S27 was carried out. Using Response Surface Methodology (RSM) the process parameters (pH, temperature and salinity) were optimized. For mass production of yeast biomass, a chemically defined medium (Barnett and Ingram, 1955) and a crude medium (Molasses-Yeast extract) were optimized using RSM. Scale up of biomass production was done in a Bench top Fermenter using these two optimized media. Comparative efficacy of the defined and crude media were estimated besides nutritional evaluation of the biomass developed using these two optimized media.
Resumo:
The constitutive production of AMPs in shrimps ensures that animals are able to protect themselves from low-level assaults by pathogens present in the environment. As these molecules play important roles in the shrimp immune defense system, the expression level of these AMPs are possible indicators of the immune state of shrimps. The present study also indicates the antiviral property of AMPs, especially ALF, stressing the importance of their up-regulation through the application of immunostimulants/probiotics as a prophylactic strategy in aquaculture. The present study shows that shrimp defense system is equipped enough to evade WSSV infection to a certain extent, when the animals were maintained on marine yeast and probiotic diet, whereas the control diet fed group succumbed to WSSV infection. This study reveals that marine yeast and probiotic supplemented diet can delay the process of WSSV infection and confer greater protection to the animals. Particularly, the protection conferred by marine yeast, C. haemulonii S27 and Bacillus MCCB101 were highly promising imparting greater hope to the aquaculture community to overcome the prevailing disease problems in aquaculture. It may be inferred from the present study that up-regulation of AMP genes could be effected by the application of immunostimulants and probiotics. Also, AMP expression profile could be used as an effective tool for screening immunostimulants and probiotics for application in shrimp culture. Ultimately, it is likely that no single compound or strategy will provide a solution to the problem of disease within aquaculture and that, in reality, a suite of techniques will be required including the manipulation of the rearing environment, addition of probionts as a matter of routine during culture, and the use of immunostimulants and other supplements during vulnerable growth phases. Finally, the development of good management practices, the control of environmental variables, genetic improvement in the penaeid species, understanding of host-virus interaction, modulation of the shrimp immune system, supported by functional genomics and proteomics of this crustacean, as a whole suggests that the control of WSSV is not far.
Resumo:
This thesis Entitled Marine actinomycetes as source of antimicrobial compounds and as probiotics and single cell protein for application in penaeid peawn culture systems. Ocean harbours more than 80% of all life on earth and remains our greatest untapped natural resource. The study revealed the potential of marine actinomycetes as a source of antimicrobial compounds. The selected streptomycetes were found to be capable of inhibiting most of the pathogenic vibrios, whichis a major problem both in hatcheries and grow out systems. The bioactive principle can be incorporated with commercial feeds and applied as medicated diet for the control of vibrios in culture systems.The hydrolytic potential inhibitory property against pathogens and non—pathogenicity to penaeid prawns make the selected Streptomycesspp.an effective probioic in aquaculture. Since there is considerably less inhibition to the natural in pond ecosystem the microbial diversityis being maintained and thereby the water quality. Actinomycetes was found to be a good source of single cell protein as an ingredient inaquaculture feed formulations. Large amount of mycelial waste (actinomycete biomassO is produced from antibiotic industries and this nutrient rich waste can be effectively used as a protein source in aquaculture feeds.This study reveals the importance of marine actinomycetes as a source of antimicrobial compounds and as a probiotic and single cell protein for aquaculture applications.
Resumo:
the present study was undertaken with the following objectives: 1. Isolation and identification of yeasts from Arabian Sea and Bay of Bengal. 2. Molecular characterization of yeast isolates and phylogenetic analysis 3. Physiological and biochemical characterization of the isolates. 4. Proximate composition of yeast biomass and bioactive compounds. The Thesis is comprised of six chapters. A general introduction to the topic is given in Chapter1. Isolation and identification of marine yeasts are presented in Chapter 2. Chapter 3 deals with molecular identification and physiological characterization of Non- pigmented yeasts. Molecular identification and physiological characterization of pigmented yeast is presented in Chapter 4. Proximate composition of yeast biomass of various genera and their bioactive compounds are illustrated in Chapter 5. A summary of the results of the present study is given in Chapter 6. References and Appendices are followed
Resumo:
Essential and Molecular Dynamics (ED/MD) have been used to model the conformational changes of a protein implicated in a conformational disease-cataract, the largest cause of blindness in the world-after non-enzymic post-translational modification. Cyanate modification did not significantly alter flexibility, while the Schiff's base adduct produced a more flexible N-terminal domain, and intra-secondary structure regions, than either the cyanate adduct or the native structure. Glycation also increased linker flexibility and disrupted the charge network. A number of post-translational adducts showed structural disruption around Cys15 and increased linker flexibility; this may be important in subsequent protein aggregation. Our modelling results are in accord with experimental evidence, and show that ED/MD is a useful tool in modelling conformational changes in proteins implicated in disease processes. (C) 2003 Published by Elsevier Ltd.
Resumo:
In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations Of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concert I rations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.
Resumo:
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short-term insulin-induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg(-1)). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L-alanine (5 mM), L-lactate (2 mM)), L-glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L-lactate and pyruvate production from L-alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L-lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L-glutamine than livers front COG rats and, in the IIH rats, the production of glucose from L-glutamine was higher than that front L-alanine. The higher glucose production in livers from the IIH group. when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together. the results suggest that L-glutamine is better than L-alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright (C) 2008 John Wiley & Sons. Ltd.
Resumo:
Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The presence of the, 4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer`s disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon 4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin oil macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried Out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by Conk The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In Conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating ail immunomodulatory effect of phosphatidylcholine. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (170, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats (similar to 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats (similar to 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was their infused with glucagon (1 nM), isoproterenot (2 mu M), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase. Copyright (c) 2008 John Wiley & Sons, Ltd.