951 resultados para Biological structure
Resumo:
River structure and functioning are governed naturally by geography and climate but are vulnerable to natural and human-related disturbances, ranging from channel engineering to pollution and biological invasions. Biological communities in river ecosystems are able to respond to disturbances faster than those in most other aquatic systems. However, some extremely strong or lasting disturbances constrain the responses of river organisms and jeopardise their extraordinary resilience. Among these, the artificial alteration of river drainage structure and the intense use of water resources by humans may irreversibly influence these systems. The increased canalisation and damming of river courses interferes with sediment transport, alters biogeochemical cycles and leads to a decrease in biodiversity, both at local and global scales. Furthermore, water abstraction can especially affect the functioning of arid and semi-arid rivers. In particular, interception and assimilation of inorganic nutrients can be detrimental under hydrologically abnormal conditions. Among other effects, abstraction and increased nutrient loading might cause a shift from heterotrophy to autotrophy, through direct effects on primary producers and indirect effects through food webs, even in low-light river systems. The simultaneous desires to conserve and to provide ecosystem services present several challenges, both in research and management.
Resumo:
Stock assessments can be problematic because of uncertainties associated with the data or because of simplified assumptions made when modeling biological processes (Rosenberg and Restrepo, 1995). For example, the common assumption in stock assessments that stocks are homogeneous and discrete (i.e., there is no migration between the stocks) is not necessarily true (Kell et al., 2004a, 2004b).
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
Many common fishes associated with Caribbean coral reef ecosystems use resources from more than 1 patch type during routine daily foraging activities. Few studies have provided direct evidence of connectivity across seascapes, and the importance of benthic seascape structure on movement behavior is poorly known. To address this knowledge gap, we coupled hydro-acoustic technology to track fish with seafloor mapping and pattern analysis techniques from landscape ecology to quantify seascape structure. Bluestriped grunts Haemulon sciurus and schoolmaster snapper Lutjanus apodus were tracked over 24 h periods using boat-based acoustic telemetry. Movement pathways, and day and night activity spaces were mapped using geographical information system (GIS) tools, and seafloor structure within activity spaces was mapped from high-resolution aerial photography and quantified using spatial pattern metrics. For both fish species, night activity spaces were significantly larger than day activity spaces. Fish exhibited a daytime preference for seascapes with aggregate coral reef and colonized bedrock, then shifted to night activity spaces with lower complexity soft sediment including sand, seagrass, and scattered coral/rock. Movement path complexity was negatively correlated with seascape complexity. This demonstrates direct connectivity across multiple patch types and represents the first study to apply quantitative landscape ecology techniques to examine the movement ecology of marine fish. The spatially explicit approach facilitates understanding to the linkages between biological processes and the heterogeneity of the landscape. Such studies are essential for identifying ecologically relevant spatial scales, delineating essential fish habitat and designing marine protected areas.
Resumo:
Management agencies often use geopolitical boundaries as proxies for biological boundaries. In Hawaiian waters a single stock is recognized of common bottlenose dolphins, Tursiops truncatus, a species that is found both in open water and near-shore among the main Hawaiian Islands. To assess population structure, we photo-identified 336 distinctive individuals from the main Hawaiian Islands, from 2000 to 2006. Their generally shallow-water distribution, and numerous within-year and between-year resightings within island areas suggest that individuals are resident to the islands, rather than part of an offshore population moving through the area. Comparisons of identifications obtained from Kaua‘i/Ni‘ihau, O‘ahu, the “4-island area,” and the island of Hawai‘i showed no evidence of movements among these island groups, although movements from Kaua‘i to Ni‘ihau and among the “4-islands” were documented. A Bayesian analysis examining the probability of missing movements among island groups, given our sample sizes for different areas, indicates that interisland movement rates are less than 1% per year with 95% probability. Our results suggest the existence of multiple demographically independent populations of island-associated common bottlenose dolphins around the main Hawaiian islands.
Resumo:
Microalgal community structure in experimental carp-pangasiid catfish polyculture ponds under four different stocking rates (treatments) each with three replications in the Field Laboratory of the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh was studied. A total of 38 microalgal genera were identified under four major groups: 18 genera belong to Chlorophyceae, 9 to Cyanophyceae, 8 to Bacillariophyceae and 3 to Euglenophyceae. Chlorophyceae was abundant in all treatments followed by Cyanophyceae, Bacillariophyceae and Euglenophyceae throughout the study period. The cell densities of total microalgal population varied between 51.66x10^3 cells/L in June in T1 and 126.4x10^3 cells/L in August in T2. The appearance of Microcysris, Oscillatoria, Gomphospheria, Hildenbrandia, Chlorella, Scenedesmus, Cyclotella, Navicula, Nitzschia, Euglena and Phacus as dominant genera throughout the study period may related to sufficient nutrient availability, good light conditions and high growth rate of these genera. Water quality parameters of the experimental ponds were within suitable range for microalgal production and fish culture though the nutrient (nitrate-nitrogen and phosphate-phosphorus) concentrations were high. The factors involved in structuring a phytoplankton community arise from the relationship generated by physical, chemical and biological conditions especially the stocked planktivorous carps. Microalgal bloom formation is very common in pangasiid catfish monoculture ponds but in the present study bloom was not formed and the algal species diversity was found to be slightly increased with the study period. The introduction carps of carps in the experimental ponds might have helped in controlling the microalgal bloom formation and maintenance of the species diversity.
Resumo:
This study was conducted to determine reproduction characteristics, diet regime, age structure and population dynamics parameters of the vimba vimba persa (Pallas, 1811) in Mazandaran waters of the Caspian Sea, from October 2008 to September 2009. A total of 994 specimens were monthly collected by beach seine and cast net from six fish landings of Ramsar, Tonekabon, Chaloos, Mahmood Abad, Sari and Behshahr. Biometric characters were measured for each specimen at the laboratory. Scales were used for age determination. Sex determination and fecundity were determined. Population dynamic parameters as well as stock assessment including cohort analysis were estimated using FISAT software. The finding showed that the mean of fork length and body weight of the Caspian Vimba were 168.4±2.6 mm and 71.94±32.24 g respectively. Strong correlation was found between these two variables (a= 0.012; b = 3.047; r2 = 0.955). 92 specimens were studied from the fecundity point of view. This species was found to have more abundance in spring (esp. Apr-May). The samples composed of 397(42.6%) male, 537(57.4%) female; Overall sex ratio (M: F =1: 1.35) was significantly different from the expected 1:1 ratio (p ≤0.05). The advanced stages of maturity (4th & 5th) were found in April and May. The highest Gonadosomatic Index in female was in May and the lowest one was in July. This fish is therefore a spring spawner. The maximum absolute and relative fecundities were 34640 and 260.9, respectively; the minimum absolute and relative fecundities were 5400 and 94.5 respectively. The averages of absolute and relative fecundities were 17198±7710 and 171.85±48.8, respectively. Coefficient vacuity index was 59.2% which indicates that this fish is mesophagous. Among of living creature consumes by Caspian Vimba mollusks, 76 arthropods, worms, plants, detritus and fishes were found 32.9% , 26.7% , 13.4% , 17% , 4.4% and 1.6% respectively. The infinite fork lengths were 261 mm for females, 25mm for males and 261 mm for both sexes respectively. For population growth and mortality parameters; K ( 0.28 per year for both sexes, 0.3 per year for males, 0.33 per year for females); t0 ( -0.65 year for both sexes, -0.23 year in females, -0.51 year in males ); Φ' ( 2.28 ); Z ( 0.98 per year ); M ( 0.59 per year); F ( 0.39 per year) and Exploitation coefficient was 0.4. The analysis showed that total biomass and MSY were 1336 and 528.8 tonnes respectively.
Resumo:
In the present research, investigations were carried out for structure elucidation of natural compounds and also for studing biological and teratogenical effects of two Genus of soft corals named as " Echinogorgia cf. indica" and "Sinularia erecta" in Persian Gulf. First, 350 gr Echinogorgia was extracted by Acetone, then, the extract was separated by ether from aqueos phase to give 4.5 gr oil. The oil eluted with Petrol - ether Et2 o (9:1) which was recovered Linderazulene and it's derivative as purple Cristals (350 mg/ca 0.1 %). In order to determine molecular structure, the Samples were used for spectroscopic method as: H1- NMR , C13- NMR and 2D NMR. Also, for extraction and structure elucidation of natural compounds, the soft coral " sinularia erecta " were used 1187/37 gr and extracted by Aceton. The extract was concentrated and resulting aqueous suspension and extracted by using ether to give 8.41 gr oil. The oil , was Chromatographed on a column of silica gel and some different fractions were gathered. Initial fraction (1-11) which were nonpolar compounds were seprated by GC/MS. Mass spectrum were prepared and much compounds were recognized.
Resumo:
Fluid flow in biological tissues is important in both mechanical and biological contexts. Given the hierarchical nature of tissues, there are varying length scales at which time-dependent mechanical behavior due to fluid flow may be exhibited. Here, spherical nanoindentation and microindentation testings are used for the characterization of length scale effects in the mechanical response of hydrated tissues. Although elastic properties were consistent across length scales, there was a substantial difference between the time-dependent mechanical responses for large and small contact radii in the same tissue specimens. This difference was far more obvious when poroelastic analysis was used instead of viscoelastic analysis. Overall, indentation testing is a fast and robust technique for characterizing the hierarchical structure of biological materials from nanometer to micrometer length scales and is capable of making quantitative material property measurements to do with fluid flow. © 2011 Materials Research Society.
Resumo:
It is extremely difficult to explore mRNA folding structure by biological experiments. In this report, we use stochastic sampling and folding simulation to test the existence of the stable secondary structural units of-mRNA, look for the folding units, and explore the probabilistic stabilization of the units. Using this method, We made simulations for all possible local optimum secondary structures of a single strand mRNA within a certain range, and searched for the common parts of the secondary structures. The consensus secondary structure units (CSSUs) extracted from the above method are mainly hairpins, with a few single strands. These CSSUs suggest that the mRNA folding units could be relatively stable and could perform specific biological function. The significance of these observations for the mRNA folding problem in general is also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100 °C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.
Resumo:
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.