981 resultados para Biological Phosphorus Removal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse osmosis (RO) is currently one of the most prevalent methods used for seawater desalination. During the past four decades, the research anddevelopment has reduced the energy consumption from about 20 to 4 kWh/m3, while improvements in membrane science has led to a 20-fold increase in the specific membrane flux. Nevertheless, research is still underway to reduce the operation and maintenance problems and thus improve the performance of RO systems. The most important maintenance problem associated with RO operation is the membrane fouling, especially biological fouling (biofouling). This work focuses on the aspects to eliminate biofouling in RO membranes, by adopting a proper pretreatment system. The experimental results revealed that fluidized bed biological granular activated carbon, at 15 min empty bed contact time (with dissolved organic carbon, DOC concentration of 6–8 mg/L) can be utilized effectively to remove nearly 100% biodegradable DOC from seawater. Continuous experiments of membrane bioreactor (MBR) have been conducted concomitantly to gain insight into the long-term effects of MBR on biodegradable organic content removal and biofouling control. The results show that MBR system produced better effluent with 78% DOC removal and quasi-total biodegradable DOC removal. Dissolved oxygen was not a limiting factor for the DOC degradation. Short-term experimental runs were conducted with RO membrane using both pretreated and non-pretreated seawater. The results showed that filtrate from MBR yielded the highest permeate flux improvement, which was approximately 300% compared with non-pretreated seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many Asian countries, rapid industrialization and urbanization has led to an increased number of cars, making wastewater from gas stations an important issue of concern in urban environment. This wastewater is characterized by high concentration of oil-water emulsion, which cannot be effectively removed by a conventional gravity separator. An experimental investigation on the treatability of oily wastewater from gas stations using a membrane bioreactor (MBR) system revealed that MBR system could achieve good removal efficiency with stability against shock loading. Optimum operating conditions were found to be at a hydraulic retention time of 4 h and an oil-loading rate of 1.8 kg oil m^sup -3^.d^sup -1^. It was anticipated that adding powdered activated carbon (PAC) in the MBR could help to adsorb the oils. However, operating the MBR with only microbial flocs has an advantage over adding PAC particles into the MBR, since the former condition could provide a prolonged cycle of filtration with a relatively lesser increase in transmembrane pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm−1. The hydraulic loading rate was tested at 3.75 cm day−1. In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha−1 year−1 biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbon (AC) developed from loofah sponge with phosphoric acid activation was applied to absorb cefalexin (CEX) in aqueous solution. AC was characterized by N2 adsorption–desorption isotherms and Fourier transform infrared spectroscopy (FTIR). Factors influencing the adsorption process were investigated. The equilibrium adsorption isotherms and kinetics of CEX were also studied. The results showed that AC prepared from loofah sponge had rough surface and abundant pores. The determination results of specific surface area (810.12 m2/g) and average pore size (5.28 nm) suggested the high adsorption capability. At low concentration, the AC could adsorb about 95% of CEX. The adsorption effect was independent of the temperature and pH. The maximum adsorption amount of CEX was about 55.11 mg/g at 308 K. The equilibrium data agreed well with Freundlich isotherm equation (R2 = 0.9957) at 308 K, which indicated multilayer adsorption. FTIR analysis suggested the existence of phosphorus-containing functional groups, C–O bond, and C=C bond on the surface of AC of which the peak intensity of AC after adsorption was slightly lower after adsorption, indicating that the AC surface groups interacted with or were covered by the CEX species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we reported a new method in which molybdenum heteropolyacid salt was selected to mix with lanthanum oxide and bentonite, respectively, and the dipping method was used to prepare the new composites of heteropolyacid salt–lanthanum oxide, heteropolyacid salt–bentonite, and heteropolyacid salt–lanthanum oxide–bentonite. We observed that the composites have a better removal effect for phosphorus by control of the ratio and calcination temperature. The effect of quantity, adsorption time, phosphorus wastewater concentration, and pH value of composites on phosphorus adsorption was studied. We also found that the removal rate of phosphorus by the composite of heteropolyacid salt–lanthanum oxides increases up to 99.1% under the condition of 1:1 mass ratio and 500°C of calcination temperature. IR and XRD studies suggest that molybdenum heteropolyacid salt has been loaded to lanthanum oxide carrier successfully and heteropolyacid salt keeps the original Keggin structure. Heteropolyacid salt–lanthanum oxide has a good adsorption effect on phosphorus under the condition of 0.15 g of the composite, 90 min of adsorption time, phosphorus concentration of 50 mg L−1, and pH value of 3. The adsorption of phosphorus corresponds with the Langmuir isotherm model and Lagergren first-order kinetics equation. Therefore, the composite has excellent absorption ability and was competent in removing phosphorus with a low concentration from aqueous solution. It could be a great potential adsorbent for the removal of phosphorus in lakes, rivers, and reservoirs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to study the effects of phosphorous (P) fertilization on nutritional and developmental aspects of growing mango plants. The mango plants were evaluated by soil chemical analyses, leaf chemical analyses, biological examination of plant growth, and the starting point of fruit production. Having this in view, an experiment was set up on 2 January 2003, at Flora, a farm in Uberlandia, state of Minas Gerais, Brazil. The soil was a clayish Oxisol. The doses at planting were: D0 = zero, D1 = 40, D2 = 100, D3 = 200, and D4 = 300 g of P2O5 plant-1. These doses at the beginning of the second year were multiplied by 1.5 and at the beginning of the third year by 2.0 and applied to the plants. The fertilizer used in this experiment was triple superphosphate (44% of P2O5.). During August of 2004, 2005, and 2006, soil samples were taken at a depth of 20 cm in between the plant rows. Leaf samples were taken during August of 2004 and 2005 to determine macro- and micronutrient contents in the leaves. Plant stem diameter was measured during January of 2004 and 2005. Plant height and crown radius were measured during January of 2005 and fruit production in 2005 and 2006. Fertilizer applications increased the level of P in the soil but significantly influenced plant performance only after the second year. The effects of phosphorus on mango plants take place slowly leading to increments in plant stem diameter only at the third year. Fruit set was not influenced by phosphorous fertilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of increasing phosphorus (P) intake on P utilization was investigated in balance experiments using 12 Saanen goats, 4 to 5 mo of age and weighing 20 to 30 kg. The goats were given similar diets with various concentrations of P, and 32P was injected to trace the movement of P in the body. A P metabolism model with four pools was developed to compute P exchanges in the system. The results showed that P absorption, bone resorption, and excretion of urinary P and endogenous and fecal P all play a part in the homeostatic control of P. Endogenous fecal output was positively correlated to P intake (P < .01). Bone resorption of P was not influenced by intake of P, and P recycling from tissues to the blood pool was lesser for low P intake. Endogenous P loss occurred even in animals fed an inadequate P diet, resulting in a negative P balance. The extrapolated minimum endogenous loss in feces was .067 g of P/d. The minimum P intake for maintenance in Saanen goats was calculated to be .61 g of P/ d or .055 g of P/(kg.75·d) at 25 kg BW. Model outputs indicate greater P flow from the blood pool to the gut and vice versa as P intake increased. Intake of P did not significantly affect P flow from bone and soft tissue to blood. The kinetic model and regressions could be used to estimate P requirement and the fate of P in goats and could also be extrapolated to both sheep and cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant Growth Promoting Rhizobacteria (PGPR) has been used as a biofertilizer, bringing benefits to agriculture as Phosphorus Solubilizing Bacteria (PSB), indole-acetic acid (IAA) producers, and with other activites. The goal of this report was the identification of PGPR from soils under sugarcane crops by 16S rRNA sequencing, and the evaluation of the ability of phosphorus solubilizing and IAA production by biological assays. The isolates of this work were obtained from three areas of sugarcane crop from São Paulo State, Brazil. All isolates came from rhizosphere soil, and in a total of 60 isolates just 10 have showed high ability in phosphorus solubilizing. The selection of PSB may be done by phenotypic and/or genotypic characterization. Among ten isolates Enterobacter sp. (FJ890899), Entrobacter homaechei subsp. verschuerennii (FJ890998), Burkholderia sp. (FJ890895), and Labrys portucalensis (FJ890891) were able to IAA production. © 2006-2012 Asian Research Publishing Network (ARPN).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fish farms' water quality management is analyzed with regard to the management employed and the different trophic states are compared within the system during the dry and rainy seasons. Six sites were marked two in the water supply (P1 and P2), and four within the fish farm (P3 to P6). Whereas sites P1 and P2 (water supply) were characterized as oligotrophic, the others were mesotrophic and eutrotrophic sites. Environmental variables, mainly nutrients, conductivity, COD, BOD5 and TSS tended to increase as from P3 due to management and fertilization. Greater impact has been registered in the fish farm under analysis for variables COD, ammonia, total phosphorus and TSS during the discharge and pond emptying period. Frequent monitoring of water quality should be undertaken in fish breeding and plankton production ponds, especially in those close to P3 and P4. Removal of sediment in decantation lake or P5 is also recommended to decrease nutrient concentrations, especially phosphorus, accumulated on the bottom soil.