959 resultados para Biogas Combustion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is scant evidence regarding the associations between ambient levels of combustion pollutants and small for gestational age (SGA) infants. No studies of this type have been completed in the Southern United States. The main objective of the project presented was to determine associations between combustion pollutants and SGA infants in Texas using three different exposure assessments. ^ Birth certificate data that contained information on maternal and infant characteristics were obtained from the Texas Department of State Health Services (TX DSHS). Exposure assessment data for the three aims came from: (1) U.S. Environmental Protection Agency (EPA) National Air Toxics Assessment (NATA), (2) U.S. EPA Air Quality System (AQS), and (3) TX Department of Transportation (DOT), respectively. Multiple logistic regression models were used to determine the associations between combustion pollutants and SGA. ^ For the first study looked at annual estimates of four air toxics at the census tract level in the Greater Houston Area. After controlling for maternal race, maternal education, tobacco use, maternal age, number of prenatal visits, marital status, maternal weight gain, and median census tract income level, adjusted ORs and 95% confidence intervals (CI) for exposure to PAHs (per 10 ng/m3), naphthalene (per 10 ng/m3), benzene (per 1 µg/m3), and diesel engine emissions (per 10 µg/m3) were 1.01 (0.97–1.05), 1.00 (0.99–1.01), 1.01 (0.97–1.05), and 1.08 (0.95–1.23) respectively. For the second study looking at Hispanics in El Paso County, AORs and 95% confidence intervals (CI) for increases of 5 ng/m3 for the sum of carcinogenic PAHs (Σ c-PAHs), 1 ng/m3 of benzo[a]pyrene, and 100 ng/m3 in naphthalene during the third trimester of pregnancy were 1.02 (0.97–1.07), 1.03 (0.96–1.11), and 1.01 (0.97–1.06), respectively. For the third study using maternal proximity to major roadways as the exposure metric, there was a negative association with increasing distance from a maternal residence to the nearest major roadway (Odds Ratio (OR) = 0.96; 95% CI = 0.94–0.97) per 1000 m); however, once adjusted for covariates this effect was no longer significant (AOR = 0.98; 95% CI = 0.96–1.00). There was no association with distance weighted traffic density (DWTD). ^ This project is the first to look at SGA and combustion pollutants in the Southern United States with three different exposure metrics. Although there was no evidence of associations found between SGA and the air pollutants mentioned in these studies, the results contribute to the body of literature assessing maternal exposure to ambient air pollution and adverse birth outcomes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present uncertain global context of reaching an equal social stability and steady thriving economy, power demand expected to grow and global electricity generation could nearly double from 2005 to 2030. Fossil fuels will remain a significant contribution on this energy mix up to 2050, with an expected part of around 70% of global and ca. 60% of European electricity generation. Coal will remain a key player. Hence, a direct effect on the considered CO2 emissions business-as-usual scenario is expected, forecasting three times the present CO2 concentration values up to 1,200ppm by the end of this century. Kyoto protocol was the first approach to take global responsibility onto CO2 emissions monitoring and cap targets by 2012 with reference to 1990. Some of principal CO2emitters did not ratify the reduction targets. Although USA and China spur are taking its own actions and parallel reduction measures. More efficient combustion processes comprising less fuel consuming, a significant contribution from the electricity generation sector to a CO2 dwindling concentration levels, might not be sufficient. Carbon Capture and Storage (CCS) technologies have started to gain more importance from the beginning of the decade, with research and funds coming out to drive its come in useful. After first researching projects and initial scale testing, three principal capture processes came out available today with first figures showing up to 90% CO2 removal by its standard applications in coal fired power stations. Regarding last part of CO2 reduction chain, two options could be considered worthy, reusing (EOR & EGR) and storage. The study evaluates the state of the CO2 capture technology development, availability and investment cost of the different technologies, with few operation cost analysis possible at the time. Main findings and the abatement potential for coal applications are presented. DOE, NETL, MIT, European universities and research institutions, key technology enterprises and utilities, and key technology suppliers are the main sources of this study. A vision of the technology deployment is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on the generation and distribution of mineral species in fly and bottom ashes. These were formed during a fluidised co-combustion of a fossil fuel (coal) and a non-fossil fuel (tyre rubber) in a small fluidised bed combustor (7cm x 70cm). The pilot plant had continuous fuel feed using varying ratios of coal and rubber. The study also focuses on the lixiviation behaviour of metallic elements with the assessement of zinc recovering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every solid fuel has a tendency to react with oxygen, a fact that constitutes the basis of their ability to oxidation and energy intake for combustion, but that poses a risk when it occurs in an uncontrolled manner. When the slow oxidation phenomenon produces more heat than can be evacuated, the result is a heating process, which promotes combustion reactions, primarily fuel oxidation, and a progressive increase in temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAHs are pollutants of concern since they are known carcinogenic compounds. Their occurrence is mainly related to combustion or pyrolysis of organic matter such as fossil fuels. In the current scenario where biofuels are growingly important, it is also necessary to characterize PAH emissions due to their combustion. There are a number of works concerning PAH emissions from biodiesel combustion in Diesel engines, however, there are few regarding the difference between them depending on the feedstock and type of alcohol used in the transesterification. The authors have processed and characterized biodiesel from several feedstocks (Le. tallow, palm, rapeseed, soy-bean, coconut, peanut and linseed oils) to obtain FAME and FAEE and they have developed a method to measure the PAHs originated during their combustion in a bomb calorimeter. The tests have been carried out under different oxygen pressure conditions, and samples have been c1eaned from the bomb after each one of these tests. The samples have been prepared for GC-MS analysis, where PAH quantities among some other combustion products have been assessed. This work shows statistical relations obtained between the measured amounts of 18 PAHs of concern and the composition (oil and type of alcohol) used to obtain the biodiesel, and also the oxygen pressure during combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the C02 capture from power generation, the energy penalties for the capture are one of the main challenges. Nowadays, the post-combustion methods have energy penalties 10wer than the oxy combustion and pre-combustion technologies. One of the main disadvantages of the post combustion method is the fact that the capture ofC02at atmospheric pressure requires quite big equipment for the high flow rates of flue gas, and the 10w partial pressure of the CO2generates an important 10ss of energy. The A1lam cyc1e presented for NETPOWER gives high efficiencies in the power production and 10w energy penalties. A simulation of this cyc1e is made together with a simulation of power plants with pre-combustion and post-combustion capture and without capture for natural gas and forcoa1. The simulations give 10wer efficiencies than the proposed for NETPOWER For natural gas the efficiency is 52% instead of the 59% presented, and 33% instead of51% in the case of using coal as fuel. Are brought to light problems in the CO2compressor due the high flow ofC02that is compressed unti1300 bar to be recyc1ed into the combustor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A research programme is being carried out at the Institute Nacional de Tecnica Aeroespacial of Spain, on several aspects of the formation of nitrogen oxides in continuous flow combustion systems, considering hydrogen and hydrocarbons as fuels. The research programme is fundamentally oriented on the basic aspects of the problem, although it also includes the study of the influence on the formation process of several operational and design variables of the combusters, such as type of fuels, fuel/air ratio, degree of mixing in premixed type flames, existence of droplets as compared with homogeneous combustion.This problem of nitrogen oxides formation is receiving lately great attention, specially in connection with automobile reciprocating engines and aircraft gas turbines. This is due to the fact of the increasing frequency and intensity of photochemical hazes or smog, typical of urban areas submitted to strong solar radiation, which are originated by the action on organic compounds of the oxidants resulting from the photochemical decomposition of nitrogen dioxide N02. In the combustion process almost all nitrogen oxides are in form of NO. This nitric oxide reacts with the oxygen of the air and forms N02, this reaction only taking place in or near the exhaust of tne motors, since the N0-02 reaction becomes frozen for the concentration existing in the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reasoned that the structures of strongly cellular flames in very lean mixtures approach an array of flame balls, each burning as if it were isolated, thereby indicating a connection between the critical conditions required for existence of steady flame balls and those necessary for occurrence of self-sustained premixed combustion. This is the starting assumption of the present study, in which structures of near-limit steady sphericosym-metrical flame balls are investigated with the objective of providing analytic expressions for critical combustion conditions in ultra-lean hydrogen-oxygen mixtures diluted with N2 and water vapor. If attention were restricted to planar premixed flames, then the lean-limit mole fraction of H2 would be found to be roughly ten percent, more than twice the observed flammability limits, thereby emphasizing the relevance of the flame-ball phenomena. Numerical integrations using detailed models for chemistry and radiation show that a onestep chemical-kinetic reduced mechanism based on steady-state assumptions for all chemical intermediates, together with a simple, optically thin approximation for water-vapor radiation, can be used to compute near-limit fuel-lean flame balls with excellent accuracy. The previously developed one-step reaction rate includes a crossover temperature that determines in the first approximation a chemical-kinetic lean limit below which combustión cannot occur, with critical conditions achieved when the diffusion-controlled radiation-free peak temperature, computed with account taken of hydrogen Soret diffusion, is equal to the crossover temperature. First-order corrections are found by activation-energy asymptotics in a solution that involves a near-field radiation-free zone surrounding a spherical flame sheet, together with a far-field radiation-conduction balance for the temperature profile. Different scalings are found depending on whether or not the surrounding atmosphere contains wáter vapor, leading to different analytic expressions for the critical conditions for flame-ball existence, which give results in very good agreement with those obtained by detailed numerical computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi-Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical-looping combustion allows an integration of CO2 capture in a thermal power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. This paper focus on the study of the energetic performance of this concept of combustion in an integrated gasification combined cycle power plant when synthesis gas is used as fuel for the gas turbines. After thermodynamic modelling and optimization of some cycle parameters, the power plant performance is evaluated under diverse working conditions and compared to a conventional integrated gasification combined cycle with precombustion capture. Energy savings in CO2 capture and storage has been quantified. The overall efficiency increase is found to be significant and even notable, reaching values of around 7%. In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La composición del purín varía en función de la dieta, los procesos fisiológicos y bioquímicos en el animal y el manejo, entre otros. La composición del purín es determinante en las emisiones de metano (CH 4 ) y amoniaco (NH 3 ) (Moset y col., 2012) y condiciona su aptitud para ser usado como fertilizante o como sustrato para la producción de biogás. Las materias primas comúnmente utilizadas en la fabricación de piensos poseen valores variables de nitrógeno ligado a fibra (N- FND) y determinadas combinaciones de ingredientes modifican de manera considerable la concentración de N-FND en los piensos. La ingesta de diferentes cantidades de N-FND puede dar lugar a cambios en la composición del purín y en su potencial de producción de NH 3 ,CH 4 y biogás. El objetivo del presente estudio fue evaluar los efectos de la modificación de la calidad del nitrógeno (N) en piensos de cebo en cerdos y sus implicancias en la producción de NH 3, CH 4 y biogás a partir del purín. Este ensayo es parte del proyecto GasPorc (AGL2011-30023-C03) que evalúa la relación que existe entre la composición de la dieta, características del purín y su potencial de producción de gases y valor fertilizante.