917 resultados para Bio-responsive drug delivery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various strategies for ocular drug delivery are considered; from basic formulation techniques for improving availability of drugs; viscosity enhancers and mucoadhesives aid drug retention and penetration enhancers promote drug transport into the eye. The use of drug loaded contact lenses and ocular inserts allows drugs to be better placed where they are needed for more direct delivery. Developments in ocular implants gives a means to overcome the physical barriers that traditionally prevented effective treatment. Implant technologies are under development allowing long term drug delivery from a single procedure, these devices allow posterior chamber diseases to be effectively treated. Future developments could bring artificial corneas to eliminate the need for donor tissue and one-off implantable drug depots lasting the patient’s lifetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide. The concentration of thiol groups on these microgels could be tailored by use of different molar ratios of the two monomers. These thiol-bearing microgels were shown to adhere to ex vivo porcine urinary bladder, which was correlated with their level of thiolation. By simply mixing solutions of thiol-bearing microgels and doxorubicin, high levels of drug loading into the microgels could be achieved. Thiol-bearing microgels controlled the release of doxorubicin in a time-dependent manner over several hours. These doxorubicin-loaded thiol-bearing microgels could have application in the treatment of early-stage bladder cancers. The method used represents a new ‘bottom-up’ approach for the synthesis of novel mucoadhesive microgels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the use of Pluronic F127 and Pluronic F68 as excipients for formulating in situ gelling systems for ocular drug delivery. Thermal transitions have been studied in aqueous solutions of Pluronic F127, Pluronic F68 as well as their binary mixtures using differential scanning calorimetry, rheological measurements, and dynamic light scattering. It was established that the formation of transparent gels at physiologically relevant temperatures is observed only in the case of 20 wt % of Pluronic F127. The addition of Pluronic F68 to Pluronic F127 solutions increases the gelation temperature of binary formulation to above physiological range of temperatures. The biocompatibility evaluation of these formulations using slug mucosa irritation assay and bovine corneal erosion studies revealed that these polymers and their combinations do not cause significant irritation. In vitro drug retention study on glass surfaces and freshly excised bovine cornea showed superior performance of 20 wt % Pluronic F127 compared to other formulations. In addition, in vivo studies in rabbits demonstrated better retention performance of 20 wt % Pluronic F127 compared to Pluronic F68. These results confirmed that 20 wt % Pluronic F127 offers an attractive ocular formulation that can form a transparent gel in situ under physiological conditions with minimal irritation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We described here a liposomal carrier system in which the targeting ligand was sulfatide, a glycosphingolipid known to bind several extracellular matrix (ECM) glycoproteins whose expression was highly up-regulated in many tumors. In vitro experiments with human glioma cell lines demonstrated that robust intracellular uptake of the liposomes depended specifically on the presence of sulfatide as the key liposomal component. Significant amount of the liposomes remained largely intact in the cytoplasm for hours following their internalization. When anticancer drug doxorubicin (DOX) was encapsulated in such liposomes, most of the drug was preferably delivered into the cell nuclei to exert its cytotoxicity. Use of this drug delivery system to deliver DOX for treatment of tumor-bearing nude mice displayed much improved therapeutic effects over the free drug or the drug carried by polyethylene glycol (PEG)-grafted liposomes. Our results demonstrate a close link between effective intracellular uptake of the drug delivery system and its therapeutic outcome. Moreover, the sulfatide-containing liposomes (SCL) may represent an interesting ligand-targeted drug carrier for a wide spectrum of cancers in which sulfatide-binding ECM glycoproteins are expressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A liquid atomiser composed of a piezoelectric transducer and a metal plate with numerous micro-apertures is studied to identify the most influential factors on its atomising performance. The Taguchi method is employed in the experiment design and analysis of the study on how each factor acts in the atomising process. An optimal condition is determined for producing a stream of droplets. The study shows that the droplet size and the spraying velocity are suitable for ophthalmic drug delivery application, with an even distribution of the drug over most of the eyeball surface area due to the controllable cross-sectional area of the droplet stream. This greatly improves the treatment effectiveness and efficiency of eye therapy. Finally, a structure of the ophthalmic drug delivery system is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whereas several biomedical applications of carbon nanotubes have been proposed, the use of boron nitride nanotubes (BNNTs) in this field has been largely unexplored despite their unique and potentially useful properties. Our group has recently initiated an experimental program aimed at the exploration of the interactions between BNNTs and living cells. In the present paper, we report on the magnetic properties of BNNTs containing Fe catalysts which confirm the feasibility for their use as nanovectors for targeted drug delivery. The magnetisation curves of BNNTs characterised by the present study are typical of superparamagnetic materials with important parameters, including magnetic permeability and magnetic momentum, derived by employing Langevin theory. In-vitro tests have demonstrated the feasibility for influencing the uptake of BNNTs by living cells by exposure to an external magnetic source. A finite element method analysis devised to predict this effect produced predictive data with close agreement with the experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drug development for neurodegenerative disorders are the major challenge to the science in 21st century. Many FDA approved drugs currently available in the market have limitations in crossing the blood brain barrier (BBB) owing to its complicated vasculature posed by the presence of specialized cells. Nanotechnology is an emerging interdisciplinary area, which have many applications including drug delivery. Nanocarrier drug delivery involves targeting drugs enclosed in a particular polymer and/or amphiphilic lipids. Controlled release, nanoplatform availability for combinatorial therapy and tissue specific targeting by using advanced technologies such as molecular Trojan horse (MTH) technology are the promises of nanotechnology. Different problems are associated with drug delivery
across the BBB. Some are mostly related to the structure of brain microvasculature system while the others are related to the nanomaterial
structure. Different strategies, such as using polymeric/solid lipid nanoparticles and surface modification of nanomaterial with surfactants
like polysorbates have been conducted to solve these limitations. Also, nanodrug formulations with double coatings have been designed for oral delivery of drugs to overcome reticulo-endothelial system and to improve their BBB permeability. It seems that the best choice of strategy and material could be achieved with regard to the physical and chemical structure of the drugs. The present review discusses the potential applications of nanotechnology for drug delivery across the BBB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain is a delicate organ, isolated from general circulation and characterized by the presence of relatively impermeable endothelial cells with tight junctions, enzymatic activity and the presence of active efflux transporter mechanisms. These formidable obstacles often block drug delivery to the brain across the blood-brain barrier (BBB). Although several promising molecules have the potential in the in vitro settings but lack of in vivo response is probably because the molecule cannot reach the brain in a sufficient concentration. Drug delivery across the BBB is a major limitation in the treatment of central nervous system (CNS) disorders and CNS infections. This review deals with the role of nanobiotechnology in CNS drug delivery, in which three categories of carbon nanotubes, nanowires and nanoparticles (NPs) are explained. The small size of the NPs makes them an ideal choice to penetrate the BBB. Several mechanisms are involved in this process and various strategies are used. There are some concerns about the safety of NP entry in the brain that need to be resolved before human use. Although there is no approved nanotechnology-based CNS drug available the future for such neuro-nanobiotechnology based delivery system developments is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents design, construction, and evaluation of a micropump for drug delivery applications. The proposed micropump consists of three components: fluidics, electronics, and software. The fluidics component includes a silicone elastic diaphragm, a microservo, housing and two check valves. The diaphragm is modeled and simulated to establish its geometrical specifications. The housing is built using a rapid prototype machine. The electronics component consists of a microcontroller, a microswitch array, a simple display and a power unit. The software component is written in C and receives inputs from user, controls the microservo speed and displays the programmed speed. A number of experiments are conducted to evaluate the performance and capabilities of the micropump. The experiments focus on measurement of flow rate, dosage and duration of operation. A discussion of the performance and capabilities of the developed micropump is also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High drug loading (DL) carrier is an effective way to cure the cancerous cells. High drug loading is also one of the key issues in the drug delivery research, especially the colonic drug delivery system by oral administration. The times of drug intake could be remarkably reduced if high drug loading carriers are administered. At the same time, the related formulation materials could be effectively utilized. One major obstacle with the preparation of this system is the difficulty to encapsulate the hydrophilic drug into hydrophobic encapsulation polymer. A design of high drug loading delivery system with biodegradable, biocompatible materials and optimization of the fabrication process is a potential solution to solve the problem. So in this research, 5-Fluorouracil (5-FU) loaded Poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared by double emulsion and solvent evaporation method. Several fabrication parameters including theoretical drug loading, volume ratio of outer water phase to the first emulsion, pH value of outer aqueous phase and emulsifier PVA concentration were optimized to get a high drug loading nanoparticles. The result shows that with the increase of theoretical drug loading, the actual drug loading increased gradually. When adjusted the pH value of outer aqueous phase to the isoelectric point (8.02) of 5-Fluorouracil, the drug loading exhibited a higher one compared to other pH value solution. Relative higher volume ratio of outer water phase to the first emulsion was also beneficial for the enhancement of drug loading. But the nanoparticles size increased simultaneously due to the lower shearing force. When increased the PVA concentration, the drug loading showed an increase first and following a drop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation on targeted PLGA based drug delivery system for the therapy of colorectal cancer. The results from in-vitro cell experiments indicated that prepared systems have potent cytotoxicity and high affinity to HT-29 cancer cells. Results were published on Biomedical Engineering and Informatics and ICONN conference proceeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptameraptamer, aptamernonaptamer biomacromolecules (siRNAs, proteins) and aptamernanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.