898 resultados para Bidirectional AC-DC converter
Resumo:
The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.
Resumo:
High power density is strongly preferable for the on-board battery charger of Plug-in Hybrid Electric Vehicle (PHEV). Wide band gap devices, such as Gallium Nitride HEMTs are being explored to push to higher switching frequency and reduce passive component size. In this case, the bulk DC link capacitor of AC-DC Power Factor Correction (PFC) stage, which is usually necessary to store ripple power of two times the line frequency in a DC current charging system, becomes a major barrier on power density. If low frequency ripple is allowed in the battery, the DC link capacitance can be significantly reduced. This paper focuses on the operation of a battery charging system, which is comprised of one Full Bridge (FB) AC-DC stage and one Dual Active Bridge (DAB) DC-DC stage, with charging current containing low frequency ripple at two times line frequency, designated as sinusoidal charging. DAB operation under sinusoidal charging is investigated. Two types of control schemes are proposed and implemented in an experimental prototype. It is proved that closed loop current control is the better. Full system test including both FB AC-DC stage and DAB DC-DC stage verified the concept of sinusoidal charging, which may lead to potentially very high power density battery charger for PHEV.
Resumo:
Los sistemas de telealimentación han tomado gran importancia en diferentes campos, incluido el de las telecomunicaciones, algunos ejemplos pueden ser: En la red conmutada telefónica junto con la señal de información y llamada existe una alimentación de 48v que se transmite a través de toda la línea de transmisión hasta los terminales. En algunos ferrocarriles eléctricos, se aprovecha la producción de energía eléctrica cuando un tren baja una cuesta y el motor funciona como generador, devolviendo la energía excedente a la propia catenaria por medio de superposición, y siendo esta recuperada en otro lugar y aprovechada por ejemplo por otro tren que requiere energía. Otro uso en ferrocarriles de la telealimentación es la llamada "tecnología del transpondedor magnético", en la que el tren transmite a las balizas una señal en 27MHz además de otras de información propias, que se convierte en energía útil para estas balizas. En este proyecto pretendemos implementar un pequeño ejemplo de sistema de telealimentación trabajando en 5 MHz (RF). Este sistema transforma una señal de CC en una señal de potencia de CA que podría ser, por ejemplo, transmitida a lo largo de una línea de transmisión o radiada por medio de una antena. Después, en el extremo receptor, esta señal RF se transforma finalmente en DC. El objetivo es lograr el mejor rendimiento de conversión de energía, DC a AC y AC a DC. El sistema se divide en dos partes: El inversor, que es la cadena de conversión DC-AC y el rectificador, que es la cadena de conversión AC-DC. Cada parte va a ser calculada, simulada, implementada físicamente y medida aparte. Finalmente el sistema de telealimentación completo se va a medir mediante la interconexión de cada parte por medio de un adaptador o una línea de transmisión. Por último, se mostrarán los resultados obtenidos. ABSTRACT. Remote powering systems have become very important in different fields, including telecommunications, some examples include: In the switched telephone network with the information signal and call there is a 48v supply that is transmitted across the transmission line to the terminals. In some electric railways, the production of electrical energy is used when a train is coming down a hill and the motor acts as a generator, returning the surplus energy to the catenary itself by overlapping, and this being recovered elsewhere and used by other train. Home TV amplifiers that are located in places (storage, remote locations ..) where there is no outlet, remote power allows to carry information and power signal by the same physical medium, for instance a coax. The AC power signal is transformed into DC at the end to feed the amplifier. In medicine, photovoltaic converters and fiber optics can be used as means for feeding devices implanted in patients. Another use of the remote powering systems on railways is the "magnetic transponder technology", in which the station transmits a beacon signal at 27MHz own as well as other information, which is converted into useful energy to these beacons. In this Project we are pretending to implement a little example of remote powering system working in 5 MHz (RF). This system transform DC into an AC-RF power signal which could be, for instance, transmitted throughout a transmission line or radiated by means of an aerial. At the receiving end, this RF signal is then transformed to DC. The objective is to achieve the best power conversion performance, DC to AC and AC to DC. The system is divided in two parts: The inverter, that is the DC-AC conversion chain and the rectifier that is the AC-DC conversion chain. Each part is going to be calculated, simulated, implemented physically and measured apart. Then the complete remote-powering system is to be measured by interconnecting each part by means of a interconnector or a transmission line. Finally, obtained results will be shown.
Resumo:
Wireless power transfer (WPT) is an emerging technology with an increasing number of potential applications to transfer power from a transmitter to a mobile receiver over a relatively large air gap. However, its widespread application is hampered due to the relatively low efficiency of current Wireless power transfer (WPT) systems. This study presents a concept to maximize the efficiency as well as to increase the amount of extractable power of a WPT system operating in nonresonant operation. The proposed method is based on actively modifying the equivalent secondary-side load impedance by controlling the phase-shift of the active rectifier and its output voltage level. The presented hardware prototype represents a complete wireless charging system, including a dc-dc converter which is used to charge a battery at the output of the system. Experimental results are shown for the proposed concept in comparison to a conventional synchronous rectification approach. The presented optimization method clearly outperforms state-of-the-art solutions in terms of efficiency and extractable power.
Resumo:
En esta tesis se analiza el sistema de tracción de un vehículo eléctrico de batería desde el punto de vista de la eficiencia energética y de la exposición a campos magnéticos por parte de los pasajeros (radiación electromagnética). Este estudio incluye tanto el sistema de almacenamiento de energía como la máquina eléctrica, junto con la electrónica de potencia y los sistemas de control asociados a ambos. Los análisis y los resultados presentados en este texto están basados en modelos matemáticos, simulaciones por ordenador y ensayos experimentales a escala de laboratorio. La investigación llevada a cabo durante esta tesis tuvo siempre un marcado enfoque industrial, a pesar de estar desarrollada en un entorno de considerable carácter universitario. Las líneas de investigación acometidas tuvieron como destinatario final al diseñador y al fabricante del vehículo, a pesar de lo cual algunos de los resultados obtenidos son preliminares y/o excesivamente académicos para resultar de interés industrial. En el ámbito de la eficiencia energética, esta tesis estudia sistemas híbridos de almacenamiento de energía basados en una combinación de baterías de litio y supercondensadores. Este tipo de sistemas son analizados desde el punto de vista de la eficiencia mediante modelos matemáticos y simulaciones, cuantificando el impacto de ésta en otros parámetros tales como el envejecimiento de las baterías. Respecto a la máquina eléctrica, el estudio se ha centrado en máquinas síncronas de imanes permanentes. El análisis de la eficiencia considera tanto el diseño de la máquina como la estrategia de control, dejando parcialmente de lado el inversor y la técnica de modulación (que son incluidos en el estudio como fuentes adicionales de pérdidas, pero no como potenciales fuentes de optimización de la eficiencia). En este sentido, tanto la topología del inversor (trifásico, basado en IGBTs) como la técnica de modulación (control de corriente en banda de histéresis) se establecen desde el principio. El segundo aspecto estudiado en esta tesis es la exposición a campos magnéticos por parte de los pasajeros. Este tema se enfoca desde un punto de vista predictivo, y no desde un punto de vista de diagnóstico, puesto que se ha desarrollado una metodología para estimar el campo magnético generado por los dispositivos de potencia de un vehículo eléctrico. Esta metodología ha sido validada mediante ensayos de laboratorio. Otros aspectos importantes de esta contribución, además de la metodología en sí misma, son las consecuencias que se derivan de ella (por ejemplo, recomendaciones de diseño) y la comprensión del problema proporcionada por esta. Las principales contribuciones de esta tesis se listan a continuación: una recopilación de modelos de pérdidas correspondientes a la mayoría de dispositivos de potencia presentes en un vehículo eléctrico de batería, una metodología para analizar el funcionamiento de un sistema híbrido de almacenamiento de energía para aplicaciones de tracción, una explicación de cómo ponderar energéticamente los puntos de operación par-velocidad de un vehículo eléctrico (de utilidad para evaluar el rendimiento de una máquina eléctrica, por ejemplo), una propuesta de incluir un convertidor DC-DC en el sistema de tracción para minimizar las pérdidas globales del accionamiento (a pesar de las nuevas pérdidas introducidas por el propio DC-DC), una breve comparación entre dos tipos distintos de algoritmos de minimización de pérdidas para máquinas síncronas de imanes permanentes, una metodología predictiva para estimar la exposición a campos magnéticos por parte de los pasajeros de un vehículo eléctrico (debida a los equipos de potencia), y finalmente algunas conclusiones y recomendaciones de diseño respecto a dicha exposición a campos magnéticos. ABSTRACT This dissertation analyzes the powertrain of a battery electric vehicle, focusing on energy efficiency and passenger exposure to electromagnetic fields (electromagnetic radiation). This study comprises the energy storage system as well as the electric machine, along with their associated power electronics and control systems. The analysis and conclusions presented in this dissertation are based on mathematical models, computer simulations and laboratory scale tests. The research performed during this thesis was intended to be of industrial nature, despite being developed in a university. In this sense, the work described in this document was carried out thinking of both the designer and the manufacturer of the vehicle. However, some of the results obtained lack industrial readiness, and therefore they remain utterly academic. Regarding energy efficiency, hybrid energy storage systems consisting in lithium batteries, supercapacitors and up to two DC-DC power converters are considered. These kind of systems are analyzed by means of mathematical models and simulations from the energy efficiency point of view, quantifying its impact on other relevant aspects such as battery aging. Concerning the electric machine, permanent magnet synchronous machines are studied in this work. The energy efficiency analysis comprises the machine design and the control strategy, while the inverter and its modulation technique are taken into account but only as sources of further power losses, and not as potential sources for further efficiency optimization. In this sense, both the inverter topology (3-phase IGBT-based inverter) and the switching technique (hysteresis current control) are fixed from the beginning. The second aspect studied in this work is passenger exposure to magnetic fields. This topic is approached from the prediction point of view, rather than from the diagnosis point of view. In other words, a methodology to estimate the magnetic field generated by the power devices of an electric vehicle is proposed and analyzed in this dissertation. This methodology has been validated by laboratory tests. The most important aspects of this contribution, apart from the methodology itself, are the consequences (for instance, design guidelines) and the understanding of the magnetic radiation issue provided by it. The main contributions of this dissertation are listed next: a compilation of loss models for most of the power devices found in a battery electric vehicle powertrain, a simulation-based methodology to analyze hybrid energy storage performance in traction applications, an explanation of how to assign energy-based weights to different operating points in traction drives (useful when assessing electrical machine performance, for instance), a proposal to include one DC-DC converter in electric powertrains to minimize overall power losses in the system (despite the new losses added by the DC-DC), a brief comparison between two kinds of loss-minimization algorithms for permanent magnet synchronous machines in terms of adaptability and energy efficiency, a predictive methodology to estimate passenger magnetic field exposure due to power devices in an electric vehicle, and finally some useful conclusions and design guidelines concerning magnetic field exposure.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
The Solid Oxide Fuel Cell (SOFC) is a class of fuel cells that is capable of generating very high levels of power at high temperatures. SOFCs are used for stationary power generation and as Combined Heat and Power (CHP) systems. In spite of all the beneficial features of the SOFC, the propagation of ripple currents, due to nonlinear loads, is a challenging problem, as it interferes with the physical operation of the fuel cell. The purpose of this thesis is to identify the cause of ripples and attempt to eliminate or reduce the ripple propagation through the use of Active Power Filters (APF). To this end, a systematic approach to modeling the fuel cell to account for its nonlinear behavior in the presence of current ripples is presented. A model of a small fuel cell power system which consists of a fuel cell, a DC-DC converter, a single-phase inverter and a nonlinear load is developed in MATLAB/Simulink environment. The extent of ripple propagation, due to variations in load magnitude and frequency, are identified using frequency spectrum analysis. In order to reduce the effects of ripple propagation, an APF is modeled to remove ripples from the DC fuel cell current. The emphasis of this thesis is based on the idea that small fuel cell systems cannot implement large passive filters to cancel the effects of ripple propagation and hence, the compact APF topology effectively protects the fuel cell from propagating ripples and improves its electrical performance.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
Because of high efficacy, long lifespan, and environment-friendly operation, LED lighting devices become more and more popular in every part of our life, such as ornament/interior lighting, outdoor lightings and flood lighting. The LED driver is the most critical part of the LED lighting fixture. It heavily affects the purchasing cost, operation cost as well as the light quality. Design a high efficiency, low component cost and flicker-free LED driver is the goal. The conventional single-stage LED driver can achieve low cost and high efficiency. However, it inevitably produces significant twice-line-frequency lighting flicker, which adversely affects our health. The conventional two-stage LED driver can achieve flicker-free LED driving at the expenses of significantly adding component cost, design complexity and low the efficiency. The basic ripple cancellation LED driving method has been proposed in chapter three. It achieves a high efficiency and a low component cost as the single-stage LED driver while also obtaining flicker-free LED driving performance. The basic ripple cancellation LED driver is the foundation of the entire thesis. As the research evolving, another two ripple cancellation LED drivers has been developed to improve different aspects of the basic ripple cancellation LED driver design. The primary side controlled ripple cancellation LED driver has been proposed in chapter four to further reduce cost on the control circuit. It eliminates secondary side compensation circuit and an opto-coupler in design while at the same time maintaining flicker-free LED driving. A potential integrated primary side controller can be designed based on the proposed LED driving method. The energy channeling ripple cancellation LED driver has been proposed in chapter five to further reduce cost on the power stage circuit. In previous two ripple cancellation LED drivers, an additional DC-DC converter is needed to achieve ripple cancellation. A power transistor has been used in the energy channeling ripple cancellation LED driving design to successfully replace a separate DC-DC converter and therefore achieved lower cost. The detailed analysis supports the theory of the proposed ripple cancellation LED drivers. Simulation and experiment have also been included to verify the proposed ripple cancellation LED drivers.
Resumo:
Este artículo presenta un resultado de investigación financiado con recursos propios en el que se expone un modelo en espacio de estados de un rectificador trifásico controlado active front end. Utilizando este modelo se deriva una ley de control orientado al voltaje (VOC), enfocado en el comportamiento como carga resistiva, factor de potencia unitario, el cual es probado mediante simulación usando el Toolbox SimPowerSystem en Simulink de Matlab®.
Resumo:
Electric vehicle (EV) batteries tend to have accelerated degradation due to high peak power and harsh charging/discharging cycles during acceleration and deceleration periods, particularly in urban driving conditions. An oversized energy storage system (ESS) can meet the high power demands; however, it suffers from increased size, volume and cost. In order to reduce the overall ESS size and extend battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) has been considered as an alternative solution. In this work, we investigate the optimized configuration, design, and energy management of a battery-UC HESS. One of the major challenges in a HESS is to design an energy management controller for real-time implementation that can yield good power split performance. We present the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC converter interfacing with the UC and the battery. In particular, a multi-objective optimization problem is formulated to optimize the power split in order to prolong the battery lifetime and to reduce the HESS power losses. This optimization problem is numerically solved for standard drive cycle datasets using Dynamic Programming (DP). Trained using the DP optimal results, an effective real-time implementation of the optimal power split is realized based on Neural Network (NN). This proposed online energy management controller is applied to a midsize EV model with a 360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy management controller effectively splits the load demand with high power efficiency and also effectively reduces the battery peak current. More importantly, a 38V-385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform has been developed. The real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the real-time controller design for the battery-UC HESS. A battery State-of-Health (SoH) estimation model is developed as a performance metric to evaluate the battery cycle life extension effect. It is estimated that the proposed online energy management controller can extend the battery cycle life by over 60%.
Resumo:
High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.