936 resultados para Best available techniques
Resumo:
Recruitment is based on a conglomerate of techniques and procedures put in place to attract qualified. The recruitment process has suffered changes, becoming even more sophisticated, involving a whole organisation and a whole community. A new source of recruitment has emerged with the use of online social networks using facilitators in its development and usage, allowing the search for candidates to be fast, cheap and "global". In Portugal, the information available and studies conducted into this phenomenon are still irrelevant, with little reported on the importance of online social recruitment. The purpose of this article is to contribute to what is understood by the professional process of recruitment through online social media by recruitment companies in the Northern Region of Portugal, analysing the use of online media by recruitment professionals, facilitator support tools and the associated best practices.
Resumo:
Neuroimaging techniques provide valuable tools for diagnosing Alzheimer's disease (AD), monitoring disease progression and evaluating responses to treatment. There is currently a wide array of techniques available including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and, for recording electrical brain activity, electroencephalography (EEG). The choice of technique depends on the contrast between tissues of interest, spatial resolution, temporal resolution, requirements for functional data and the probable number of scans required. For example, while PET, CT and MRI can be used to differentiate between AD and other dementias, MRI is safer and provides better contrast of soft tissues. Neuroimaging is a technique spanning many disciplines and requires effective communication between doctors requesting a scan of a patient or group of patients and those with technical expertise. Consideration and discussion of the most suitable type of scan and the necessary settings to achieve the best results will help ensure appropriate techniques are chosen and used effectively. Neuroimaging techniques are currently expanding understanding of the structural and functional changes that occur in dementia. Further research may allow identification of early neurological signs ofAD, before clinical symptoms are evident, providing the opportunity to test preventative therapies. CombiningMRI and machine learning techniques may be a powerful approach to improve diagnosis ofAD and to predict clinical outcomes.
Resumo:
Designs of CSCL (Computer Supported Collaborative Learning)activities should be flexible, effective and customizable toparticular learning situations. On the other hand, structureddesigns aim to create favourable conditions for learning. Thus,this paper proposes the collection of representative and broadlyaccepted (best practices) structuring techniques in collaborative learning. With the aim of establishing a conceptual common ground among collaborative learning practitioners and softwaredevelopers, and reusing the expertise that best practicesrepresent, the paper also proposes the formulation of these techniques as patterns: the so-called CLFPs (CollaborativeLearning Flow Patterns). To formalize these patterns, we havechosen the educational modelling language IMS Learning Design (IMS-LD). IMS-LD has the capability to specify many of the collaborative characteristics of the CLFPs. Nevertheless, the language bears limited capability for describing the services that mediate interactions within a learning activity and the specification of temporal or rotated roles. This analysis isdiscussed in the paper, as well as our approaches towards thedevelopment of a system capable of integrating tools using IMSLDscripts and a CLFP-based Learning Design authoring tool.
Resumo:
This project was initiated in 1988 to study the effectiveness of four different construction techniques for establishing a stable base on a granular surfaced roadway. After base stabilization, the roadway was then seal coated, eliminating dust problems associated with granular surfaced roads. When monies become available, the roadway can be surfaced with a more permanent structure. A 2.8 mi (4.5 km) section of the Horseshoe Road in Dubuque County was divided into four divisions for this study. This report discusses the procedures used during construction of these different divisions. Problems and possible solutions have been analyzed to better understand the capabilities of the materials and construction techniques used on the project. The project had the following results: High structural ratings and soil K factors for the BIO CAT and Consolid bases did not translate to good roadway performance; the macadam base had the best overall performance; the tensar fabric had no noticeable effect on the macadam base; and the HFE-300 performed acceptably.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Khartoum like many cities in least developing countries (LDCs) still witnesses huge influx of people. Accommodation of the new comers leads to encroachment on the cultivation land leads to sprawl expansion of Greater Khartoum. The city expanded in diameter from 16.8 km in 1955 to 802.5 km in 1998. Most of this horizontal expansion was residential. In 2008 Khartoum accommodated 29% of the urban population of Sudan. Today Khartoum is considered as one of 43 major cities in Africa that accommodates more than 1 million inhabitants. Most of new comers live in the outskirts of the city e.g. Dar El-Salam and Mayo neighbourhoods. The majority of those new comers built their houses especially the walls from mud, wood, straw and sacks. Selection of building materials usually depends on its price regardless of the environmental impact, quality, thermal performance and life of the material. Most of the time, this results in increasing the cost with variables of impacts over the environment during the life of the building. Therefore, consideration of the environmental impacts, social impacts and economic impacts is crucial in the selection of any building material. Decreasing such impacts could lead to more sustainable housing. Comparing the sustainability of the available wall building materials for low cost housing in Khartoum is carried out through the life cycle assessment (LCA) technique. The purpose of this paper is to compare the most available local building materials for walls for the urban poor of Khartoum from a sustainability point of view by going through the manufacturing of the materials, the use of these materials and then the disposal of the materials after their life comes to an end. Findings reveal that traditional red bricks couldn’t be considered as a sustainable wall building material that will draw the future of the low cost housing in Greater Khartoum. On the other hand, results of the comparison lead to draw attention to the wide range of the soil techniques and to its potentials to be a promising sustainable wall material for urban low cost housing in Khartoum.
Resumo:
Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.
Resumo:
In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.
Resumo:
Purpose: The aim of this study was to compare 2 different methods of assessment of implants at different inclinations (90 degrees and 65 degrees)-with a profilometer and AutoCAD software. Materials and Methods: Impressions (n = 5) of a metal matrix containing 2 implants, 1 at 90 degrees to the surface and 1 at 65 degrees to the surface, were obtained with square impression copings joined together with dental floss splinting covered with autopolymerizing acrylic resin, an open custom tray, and vinyl polysiloxane impression material. Measurement of the angles (in degrees) of the implant analogs were assessed by the same blinded operator with a profilometer and through analysis of digitized images by AutoCAD software. For each implant analog, 3 readings were performed with each method. The results were subjected to a nonparametric Kruskal-Wallis test, with P <= .05 considered significant. Results: For implants perpendicular to the horizontal surface of the specimen (90 degrees), there were no significant differences between the mean measurements obtained with the profilometer (90.04 degrees) and AutoCAD (89.95 degrees; P=.9142). In the analyses of the angled implants at 65 degrees in relation to the horizontal surface of the specimen, significant differences were observed (P=.0472) between the mean readings with the profilometer (65.73 degrees) and AutoCAD (66.25 degrees). Conclusions: The degrees of accuracy of implant angulation recording vary among the techniques available and may vary depending on the angle of the implant. Further investigation is needed to determine the best test conditions and the best measuring technique for determination of the angle of the implant in vitro.
Resumo:
The objective of this thesis is model some processes from the nature as evolution and co-evolution, and proposing some techniques that can ensure that these learning process really happens and useful to solve some complex problems as Go game. The Go game is ancient and very complex game with simple rules which still is a challenge for the Artificial Intelligence. This dissertation cover some approaches that were applied to solve this problem, proposing solve this problem using competitive and cooperative co-evolutionary learning methods and other techniques proposed by the author. To study, implement and prove these methods were used some neural networks structures, a framework free available and coded many programs. The techniques proposed were coded by the author, performed many experiments to find the best configuration to ensure that co-evolution is progressing and discussed the results. Using co-evolutionary learning processes can be observed some pathologies which could impact co-evolution progress. In this dissertation is introduced some techniques to solve pathologies as loss of gradients, cycling dynamics and forgetting. According to some authors, one solution to solve these co-evolution pathologies is introduce more diversity in populations that are evolving. In this thesis is proposed some techniques to introduce more diversity and some diversity measurements for neural networks structures to monitor diversity during co-evolution. The genotype diversity evolved were analyzed in terms of its impact to global fitness of the strategies evolved and their generalization. Additionally, it was introduced a memory mechanism in the network neural structures to reinforce some strategies in the genes of the neurons evolved with the intention that some good strategies learned are not forgotten. In this dissertation is presented some works from other authors in which cooperative and competitive co-evolution has been applied. The Go board size used in this thesis was 9x9, but can be easily escalated to more bigger boards.The author believe that programs coded and techniques introduced in this dissertation can be used for other domains.
Resumo:
Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.
Resumo:
A revision of a similar publication, AMS-16.
Resumo:
On verso of t.-p.: Copyrighted by the author, Chas. W. Caryl.
Resumo:
Best Management Practices or BMPs refer to operating techniques and good housekeeping principals for reducing and preventing environmental problems. The overall philosophy behind BMPs is to conduct everyday activities in a more environmentally sound manner. By using BMPs, a facility can help protect the environment, save money, and improve community well-being all at the same time.