651 resultados para Benzene.
Resumo:
Increasing attention is being paid to the use of biomarkers for determining the exposure of humans to air toxics. Biomarkers include the nonreacted toxic substance, their metabolites, or the reaction products of these toxics with naturally substances in the body. Significant progress has been made in the measurement of biomarkers during the past several years. Much of this progress has been because of the development of advanced analytical techniques for identification and quantification of the chemical species in complex matrix, such as biological fluids. The assessment of the potential cancer risk associated with exposure to benzene at occupational and non-occupational ambient is necessary because of the toxicological implications of this air pollutant. Thus, in this review, the analytical methodologies used to determine the benzene metabolites, in special, urinary muconic acid and S-phenylmercapturic acid, are described and several problems affecting the precision of these procedures are discussed. Finally, in view of the difficulty pointed out for selecting the more adequate biomarker, further studies to evaluate the human exposure levels to benzene should be done.
Resumo:
The analysis of water samples containing volatile organic compounds has become an important task in analytical chemistry. Gas chromatography has been widely used for the analysis of volatile organic compounds in water. The headspace analysis shows as a principal characteristic the possibility of determination of the volatile components in drinking water. Benzene, Toluene and Xylene (BTX) are important compounds usually present in drinking water, from contamination by petroleum derivatives. Since they are toxic compounds even when present in low concentration levels, their determination is important in order to define the quality of the water. The sampling technique using headspace, coupled with gas chromatography as the separation method, showed to be suitable for BTX analysis in several samples at the mug/L (ppb) level.
Resumo:
The scope of this study involved the evaluation of the concentration of some volatile organic compounds in the internal environmental air of a naval shipyard in the State of Rio de Janeiro, during painting activities in enclosed, semi-enclosed and open areas. Xylene was the volatile compound found in greatest abundance (25.20 to 191.66 ppm) in the locations researched. Benzene in the air, which is a carcinogenic substance, attained levels of 3.34 ppm in semi-enclosed environments and the highest levels of toluene, xylene and n-butanol were found in the enclosed space of the ship. Results obtained highlight the need to establish air quality control programs in these internal areas, in order to safeguard the health of the workers.
Resumo:
This paper presents some results on the employ of recycled graphite electrode obtained from used common 1.5 V batteries in the preparation of modified electrode and the electrocatalytical hydrogenation of benzaldehyde and of n-valeraldehyde. This inexpensive and easy to obtain electrode was prepared by coating it with a 1:1 mixed film of poly-(allylfenil ether): poly-[allyl p-(2-ethylammonium) benzene ether] and introduction of dispersed platinum particles by ion exchange and reduction of PtCl4-2. Electroreduction of H+ from aqueous H2SO4 using the proposed electrode hydrogenated the substrates in a way comparable with that of vitreous carbon electrode.
Resumo:
Zeolite catalysts have been extensively used in petroleum refining and the chemical industry although they are deactivated by coke deposition. In order to find the best condition to avoid deactivation, the coke formation on H-mordenite was studied in this work. The coke was produced during benzene transalkylation with C9+ aromatics, under several reaction conditions. It was found that hydrogenated coke was produced in all samples without affecting the selectivity of toluene and xylene formation. This is explained in terms of the mordenite structure and the presence of hydrogen.
Resumo:
After decades of polluting actions the environment manifests serious and global consequences. The contamination of soils and groundwater by organic compounds is a widespread problem mainly on account of contamination by leakage from underground storage tanks, which often results in the release of gasoline or other chemicals. The main problem about groundwater contamination is due to the toxicity of water-soluble components such as benzene, toluene and xylene (BTX). In the present work a study about classical and modern methods for remediation of BTX is reported.
Resumo:
The thermal decomposition reaction of trans-3,6-dimethyl-3,6-diphenyl-1,2,4,5-tetraoxacyclohexane (acetophenone cyclic diperoxide, DPAF), in different solvents (methanol, 1,4-dioxane, acetonitrile and 2-propanol/benzene mixtures) in the initial concentration and temperature ranges of (4.2-10.5) x 10-3 M and 140.0 to 185.0 ºC, respectively, follows a pseudo first order kinetic law up to at least 70% DPAF conversion. An important solvent effect on the rate constant values, activation parameters (DH# and DS#) and reaction products obtained in different solvents is detected, showing that the reaction is accelerated in alcohols.
Resumo:
The effect of chromium on the catalytic properties of MCM-41 was evaluated in order to develop new catalysts for the trimethylbenzene transalkylation with benzene to produce ethylbenzene, a high-value aromatic in the industry. It was found that chromium decreases the specific surface area but increases the acidity, turning MCM-41 into an active and selective catalyst for ethylbenzene and toluene production. The coke produced on the catalyst is hydrogenated and mainly located outside the pores and thus can be easily removed. The catalyst is more active and selective than mordenite, a commercial catalyst, and thus more promising for commercial applications.
Resumo:
In this study the efficiency of advanced oxidative processes (AOPs) were investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX). The results indicated that BTX can be effectively oxidized by the UV-A-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolyc intermediates at reaction times of about 30 min. Preliminary investigations using solar light suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species.
Resumo:
Irradiation of a,a-dimethylvalerophenone (1) adsorbed on microcrystalline cellulose employing methanol as the solvent shows a Norrish Type II/Type I ratio of 1.0±0.1. In solution, values of 2.3±0.3 in benzene and 8.7±2.0 in terc-butanol were obtained. The cyclization/elimination ratio for the Norrish Type II reaction of 1 shows values of 1.2±0.3 in cellulose, 17.9±2.7 in benzene and 3.2±03 in terc-butanol. When samples of 1/microcrystalline cellulose were prepared employing n-hexane, the Type II/Type I (29.5±2.9) and the cycl/elim (113.3±12.1) ratios were dramatically modified. These results demonstrate the difference in the behavior of 1 when entrapped in the cellulose chains or adsorbed on the cellulose surface.
Resumo:
The goal of this article is to discuss the application of comprehensive two-dimensional gas chromatography (GCxGC) to petrochemical samples. The use of GCxGC for petroleum and petroleum derivatives characterization, through group type analysis, or BTEX (benzene, toluene, ethylbenzene, xylenes), total aromatic hydrocarbons, polyaromatic hydrocarbons, sulfur-containing, oxygen-containing, and nitrogen-containing compounds is presented. The capability of GCxGC to provide additional specific chemical information regarding petroleum processing steps, such as dehydrogenation of linear alkanes, the Fischer-Tropsch process, hydrogenation and oligomerization is also described. In addition, GCxGC analyses of petrochemical biomarkers and environmental pollutants derived from petrochemicals are reported.
Resumo:
The reaction of 1,2-dihydroxy-benzene (pyrocatechol) (C6H6O2) with iron oxide (Fe2O3) and sodium thiosulfate (Na2S2O3) in aqueous medium (pH 7) was investigated. Pyrocatechol suffers autoxidation and coordinates with Fe3+ in solution. The presence of S2O3(2-) in solution was fundamental to generate and stabilize the pyrocatechol oxidation products as o-semiquinones. This compound was isolated and its structure characterized using FT-IR, EPR and UV-Vis Spectroscopy as [CTA][Fe(SQ)2(Cat)]. A thermal mass loss mechanism was proposed based on Thermogravimetric Analysis (TG) to support the structural characterization.
Resumo:
Rate constants for the quenching of 1,3-indandione (1) triplet by olefins and by hydrogen and electron donors were obtained employing the laser flash photolysis technique in benzene solution. These rate constants ranged from 2.5x10(5) Lmol-1s-1 (for 2-propanol) to 5.9x10(9) Lmol-1s-1 (for DABCO). From the quenching rate constants by 1,3-cyclohexadiene, trans- and cis-stilbene a value between 49.3 and 52.4 kcal/mol was estimated for the energy of the triplet state of 1,3-indandione. The npi* character of this triplet state was evidenced by the quenching rate constants obtained when typical hydrogen donors were employed as quenchers. For 2-phenyl-1,3-indandione (2, R=phenyl) a fast Norrish type I reaction is operating which prevents the determination of kinetic and spectroscopic data of its triplet state.
Resumo:
In this study a new approach, solid phase micro extraction (SPME), is used in the evaluation of the infinite dilution activity coefficient of the solute in a given solvent. It is the purpose of the current work to demonstrate a different approach to obtain the data needed for studying the solution thermodynamics of binary liquid mixtures as well as for designing multi-component separations. The solutes investigated at the temperature 298.15 K were toluene, ethyl benzene and xylene in the solvent methanol.
Resumo:
The present article presents an assessment of PTS in Brazil including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, benzene hexachloride, aldrin, dieldrin, endrin, p,p,-DDT, p,p,DDE, p,p,-DDD, hexachlorocyclohexanes (alpha-HCH, beta-HCH, gamma-HCH and delta-HCH), endossulfan, heptachlor and pentachlorophenol. The data presented here are related to a survey of PTS levels in different environmental matrixes (soil, sediment, water, air, biota) and human tissues (milk, blood, human hair), according to the scope of the UNEP-GEF Regionally Based Assessment of PTSs. Potential sources were evaluated considering national products and imports, since most of the literature does not allow source identification. Finally, Brazilian legislation was updated.