917 resultados para Behavior Analysis
Resumo:
[ITA]La demenza consiste nel deterioramento, spesso progressivo, dello stato cognitivo di un individuo. Chi è affetto da demenza, presenta alterazioni a livello cognitivo, comportamentale e motorio, ad esempio compiendo gesti ossessivi, ripetitivi, senza uno scopo preciso. La condizione dei pazienti affetti da demenza è valutata clinicamente tramite apposite scale e le informazioni relative al comportamento vengono raccolte intervistando chi se ne occupa, come familiari, il personale infermieristico o il medico curante. Spesso queste valutazioni si rivelano inaccurate, possono essere fortemente influenzate da considerazioni soggettive, e sono dispendiose in termini di tempo. Si ha quindi l'esigenza di disporre di metodiche oggettive per valutare il comportamento motorio dei pazienti e le sue alterazioni patologiche; i sensori inerziali indossabili potrebbero costituire una valida soluzione, per questo scopo. L'obiettivo principale della presente attività di tesi è stato definire e implementare un software per una valutazione oggettiva, basata su sensori, del pattern motorio circadiano, in pazienti affetti da demenza ricoverati in un'unità di terapia a lungo termine, che potrebbe evidenziare differenze nei sintomi della malattia che interessano il comportamento motorio, come descritto in ambito clinico. Lo scopo secondario è stato quello di verificare i cambiamenti motori pre- e post-intervento in un sottogruppo di pazienti, a seguito della somministrazione di un programma sperimentale di intervento basato su esercizi fisici. --------------- [ENG]Dementia involves deterioration, often progressive, of a person's cognitive status. Those who suffer from dementia, present alterations in cognitive and motor behavior, for example performing obsessive and repetitive gestures, without a purpose. The condition of patients suffering from dementia is clinically assessed by means of specific scales and information relating to the behavior are collected by interviewing caregivers, such as the family, nurses, or the doctor. Often it turns out that these are inaccurate assessments that may be heavily influenced by subjective evaluations and are costly in terms of time. Therefore, there is the need for objective methods to assess the patients' motor behavior and the pathological changes; wearable inertial sensors may represent a viable option, so this aim. The main objective of this thesis project was to define and implement a software for a sensor-based assessment of the circadian motor pattern in patients suffering from dementia, hospitalized in a long-term care unit, which could highlight differences in the disease symptoms affecting the motor behavior, as described in the clinical setting. The secondary objective was to verify pre- and post-intervention changes in the motor patterns of a subgroup of patients, following the administration of an experimental program of intervention based on physical exercises.
Resumo:
Objective. The purpose of the study is to provide a holistic depiction of behavioral & environmental factors contributing to risky sexual behaviors among predominantly high school educated, low-income African Americans residing in urban areas of Houston, TX utilizing the Theory of Gender and Power, Situational/Environmental Variables Theory, and Sexual Script Theory. Methods. A cross-sectional study was conducted via questionnaires among 215 Houston area residents, 149 were women and 66 were male. Measures used to assess behaviors of the population included a history of homelessness, use of crack/cocaine among several other illicit drugs, the type of sexual partner, age of participant, age of most recent sex partner, whether or not participants sought health care in the last 12 months, knowledge of partner's other sexual activities, symptoms of depression, and places where partner's were met. In an effort to determine risk of sexual encounters, a risk index employing the variables used to assess condom use was created categorizing sexual encounters as unsafe or safe. Results. Variables meeting the significance level of p<.15 for the bivariate analysis of each theory were entered into a binary logistic regression analysis. The block for each theory was significant, suggesting that the grouping assignments of each variable by theory were significantly associated with unsafe sexual behaviors. Within the regression analysis, variables such as sex for drugs/money, low income, and crack use demonstrated an effect size of ≥ ± 1, indicating that these variables had a significant effect on unsafe sexual behavioral practices. Conclusions. Variables assessing behavior and environment demonstrated a significant effect when categorized by relation to designated theories.
Resumo:
The behavior of sample components whose pI values are outside the pH gradient established by 101 hypothetical biprotic carrier ampholytes covering a pH 6-8 range was investigated by computer simulation under constant current conditions with concomitant constant electroosmosis toward the cathode. Data obtained with the sample being applied between zones of carrier ampholytes and on the anodic side of the carrier ampholytes were studied and found to evolve into zone structures comprising three regions between anolyte and catholyte. The focusing region with the pH gradient is bracketed by two isotachopheretic zone structures comprising selected sample and carrier components as isotachophoretic zones. The isotachophoretic structures electrophoretically migrate in opposite direction and their lengths increase with time due to the gradual isotachophoretic decay at the pH gradient edges. Due to electroosmosis, however, the overall pattern is being transported toward the cathode. Sample components whose pI values are outside the established pH gradient are demonstrated to form isotachophoretic zones behind the leading cation of the catholyte (components with pI values larger than 8) and the leading anion of the anolyte (components with pI values smaller than 6). Amphoteric compounds with appropriate pI values or nonamphoteric components can act as isotachophoretic spacer compounds between sample compounds or between the leader and the sample with the highest mobility. The simulation data obtained provide for the first time insight into the dynamics of amphoteric sample components that do not focus within the established pH gradient.
Resumo:
In classical conditioning, an associative form of learning, animals learn to associate two stimuli. Cellular and molecular mechanisms for the induction and consolidation of associative learning and memory at the level of single cells and synaptic connections have been studied in both vertebrate and invertebrate animals. The majority of studies, however, relied on aversive stimuli to induce learning. This bias may limit the extent to which identified mechanisms generalize to other forms of associative learning and memory, such as appetitive forms. The goal of the present study was to develop a classical conditioning procedure for the marine mollusk Aplysia californica using appetitive reinforcement, and to analyze associative learning using behavioral and electrophysiological techniques. ^ Using tactile stimulation of the lips as the conditional stimulus (CS) and food as the unconditional stimulus (US) a training protocol was developed that reliably induced classical conditioning of feeding behavior. Memory persisted for at least 24 hours. The gross organization of reinforcement-mediating pathways was analyzed in additional behavioral experiments. Moreover, neurophysiological correlates of classical conditioning were identified and characterized in an in vitro preparation containing the circuitry for feeding behavior. In vitro stimulation of a nerve (AT4) that may mediate the CS during training, resulted in a greater number of buccal motor patterns (BMPs) in brains from conditioned animals, as compared to control animals. The majority of these BMPs were ingestion-like, consistent with the increased number of bites in response to the CS after classical conditioning. Moreover, classical conditioning correlated with increased excitatory synaptic input to BMP-initiating neuron B31/32, in response to stimulation of AT 4, as compared to controls. The expression of the correlates of classical conditioning identified in this study was specific to stimulation of AT 4, which is consistent the stimulus specificity that is characteristic for classical conditioning. ^ The identification of cellular correlates of classical conditioning documented here provides the basis for future, more detailed analyses of an appetitive form of associative learning and memory, that may extend the working knowledge of the cellular and molecular mechanisms for associative plasticity in general. ^
Resumo:
Objective. The purpose of the study is to provide a holistic depiction of behavioral & environmental factors contributing to risky sexual behaviors among predominantly high school educated, low-income African Americans residing in urban areas of Houston, TX utilizing the Theory of Gender and Power, Situational/Environmental Variables Theory, and Sexual Script Theory. ^ Methods. A cross-sectional study was conducted via questionnaires among 215 Houston area residents, 149 were women and 66 were male. Measures used to assess behaviors of the population included a history of homelessness, use of crack/cocaine among several other illicit drugs, the type of sexual partner, age of participant, age of most recent sex partner, whether or not participants sought health care in the last 12 months, knowledge of partner's other sexual activities, symptoms of depression, and places where partner's were met. In an effort to determine risk of sexual encounters, a risk index employing the variables used to assess condom use was created categorizing sexual encounters as unsafe or safe. ^ Results. Variables meeting the significance level of p<.15 for the bivariate analysis of each theory were entered into a binary logistic regression analysis. The block for each theory was significant, suggesting that the grouping assignments of each variable by theory were significantly associated with unsafe sexual behaviors. Within the regression analysis, variables such as sex for drugs/money, low income, and crack use demonstrated an effect size of ≥±1, indicating that these variables had a significant effect on unsafe sexual behavioral practices. ^ Conclusions. Variables assessing behavior and environment demonstrated a significant effect when categorized by relation to designated theories. ^
Resumo:
Planning and providing health care services for the elderly represents a major challenge to the health care system. One part of that challenge is the identification of those factors which determine the utilization of services by this population. The purpose of this study is to explain the use of health care services by elderly subscribers in a prepaid group health plan, using the theoretical framework developed by Andersen and Aday. The impact of the predisposing, enabling and need factors on utilization was modelled through a structural equation approach using LISREL. The data were derived from Kaiser-Permanente's Medicare Prospective Payment Project, August 1980-December 1982. Need factors, in general, were the most significant determinants of utilization, with the predisposing and enabling factors found to be secondary but necessary links in the causal chain. The model was fitted to the data from the youngest age group (65-74 years) and then evaluated for goodness of fit in the two older groups (75-84 and 85+ years). Implications of the study's findings and suggestions for further modelling the utilization behavior of the elderly are discussed. ^
Resumo:
Despite a lack of consistent research, the possible association between school attachment and cyberbullying suggests that targeting school attachment as a method of increasing help-seeking behaviors may be important in intervention strategies for cyberbullying. The present study sought to fill the gap in current literature by examining cyberbullying and school attachment in a nationally representative sample of U.S. adolescents, grades 6-10 (n=9,227). Results found that negative school attachment was significantly associated with greater odds of cyberbullying victimization (OR=4.71, p<0.001), perpetration (OR=2.95, p<0.001), and cyberbully-victim status (OR=3.38, p<0.001). After adjustment for confounding variables, cyberbullying victimization remained significant (OR=1.90, p=0.002). Overall, the present analyses suggest that higher negative school attachment may be associated with higher frequency of cyberbullying behaviors. These findings provide evidence for an association between school attachment and cyberbullying, and support considerations that improving school attachment may be a potential source of intervention against cyberbullying in an adolescent population.^
Resumo:
In 2005 the Directorate General for Industrial Development and Technological Innovation of the Canary Islands proceeded to carry out a project to measure the behavioral skills of various government agencies and companies in the Canary Islands in order to prepare a White Paper to assess the most effective measures for the stimulation of innovation in this autonomous community and to facilitate the objectives of public subsidies. This paper shows a portion of the work performed comparing the activity oriented towards innovation and the one aimed at sustaining the status quo of the organizations in the sample.
Resumo:
La implementación exitosa de herramientas colaborativas en las empresas exige de los empleados un comportamiento colaborativo adecuado. Este trabajo presenta una caracterización del compotamiento colaborativo a través del uso de blogs corporativos,identificando sus antecedentes y analizando la influencia relativa de éstos en el comportamiento colaborativo de 86 empleados del departamento de Sistemas de Información de una gran empresa industrial localizada en España. Los resultados indican que entre los antecedentes identificados, el altruismo,los objetos comunes y la confianza mutua predicen positivamente el comportamiento colaborativo,mientras que el sentdio de pertenecencia a una comunidad,la reputación y la reciprocidad no lo hacen.
Resumo:
The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force
Resumo:
Los fieltros son una familia de materiales textiles constituidos por una red desordenada de fibras conectadas por medio de enlaces térmicos, químicos o mecánicos. Presentan menor rigidez y resistencia (al igual que un menor coste de procesado) que sus homólogos tejidos, pero mayor deformabilidad y capacidad de absorción de energía. Los fieltros se emplean en diversas aplicaciones en ingeniería tales como aislamiento térmico, geotextiles, láminas ignífugas, filtración y absorción de agua, impacto balístico, etc. En particular, los fieltros punzonados fabricados con fibras de alta resistencia presentan una excelente resistencia frente a impacto balístico, ofreciendo las mismas prestaciones que los materiales tejidos con un tercio de la densidad areal. Sin embargo, se sabe muy poco acerca de los mecanismos de deformación y fallo a nivel microscópico, ni sobre como influyen en las propiedades mecánicas del material. Esta carencia de conocimiento dificulta la optimización del comportamiento mecánico de estos materiales y también limita el desarrollo de modelos constitutivos basados en mecanismos físicos, que puedan ser útiles en el diseño de componentes estructurales. En esta tesis doctoral se ha llevado a cabo un estudio minucioso con el fin de determinar los mecanismos de deformación y las propiedades mecánicas de fieltros punzonados fabricados con fibras de polietileno de ultra alto peso molecular. Los procesos de deformación y disipación de energía se han caracterizado en detalle por medio de una combinación de técnicas experimentales (ensayos mecánicos macroscópicos a velocidades de deformación cuasi-estáticas y dinámicas, impacto balístico, ensayos de extracción de una o múltiples fibras, microscopía óptica, tomografía computarizada de rayos X y difracción de rayos X de gran ángulo) que proporcionan información de los mecanismos dominantes a distintas escalas. Los ensayos mecánicos macroscópicos muestran que el fieltro presenta una resistencia y ductilidad excepcionales. El estado inicial de las fibras es curvado, y la carga se transmite por el fieltro a través de una red aleatoria e isótropa de nudos creada por el proceso de punzonamiento, resultando en la formación de una red activa de fibra. La rotación y el estirado de las fibras activas es seguido por el deslizamiento y extracción de la fibra de los puntos de anclaje mecánico. La mayor parte de la resistencia y la energía disipada es proporcionada por la extracción de las fibras activas de los nudos, y la fractura final tiene lugar como consecuencia del desenredo total de la red en una sección dada donde la deformación macroscópica se localiza. No obstante, aunque la distribución inicial de la orientación de las fibras es isótropa, las propiedades mecánicas resultantes (en términos de rigidez, resistencia y energía absorbida) son muy anisótropas. Los ensayos de extracción de múltiples fibras en diferentes orientaciones muestran que la estructura de los nudos conecta más fibras en la dirección transversal en comparación con la dirección de la máquina. La mejor interconectividad de las fibras a lo largo de la dirección transversal da lugar a una esqueleto activo de fibras más denso, mejorando las propiedades mecánicas. En términos de afinidad, los fieltros deformados a lo largo de la dirección transversal exhiben deformación afín (la deformación macroscópica transfiere directamente a las fibras por el material circundante), mientras que el fieltro deformado a lo largo de la dirección de la máquina presenta deformación no afín, y la mayor parte de la deformación macroscópica no es transmitida a las fibras. A partir de estas observaciones experimentales, se ha desarrollado un modelo constitutivo para fieltros punzonados confinados por enlaces mecánicos. El modelo considera los efectos de la deformación no afín, la conectividad anisótropa inducida durante el punzonamiento, la curvatura y re-orientación de la fibra, así como el desenredo y extracción de la fibra de los nudos. El modelo proporciona la respuesta de un mesodominio del material correspondiente al volumen asociado a un elemento finito, y se divide en dos bloques. El primer bloque representa el comportamiento de la red y establece la relación entre el gradiente de deformación macroscópico y la respuesta microscópica, obtenido a partir de la integración de la respuesta de las fibras en el mesodominio. El segundo bloque describe el comportamiento de la fibra, teniendo en cuenta las características de la deformación de cada familia de fibras en el mesodominio, incluyendo deformación no afín, estiramiento, deslizamiento y extracción. En la medida de lo posible, se ha asignado un significado físico claro a los parámetros del modelo, por lo que se pueden identificar por medio de ensayos independientes. Las simulaciones numéricas basadas en el modelo se adecúan a los resultados experimentales de ensayos cuasi-estáticos y balísticos desde el punto de vista de la respuesta mecánica macroscópica y de los micromecanismos de deformación. Además, suministran información adicional sobre la influencia de las características microstructurales (orientación de la fibra, conectividad de la fibra anisótropa, afinidad, etc) en el comportamiento mecánico de los fieltros punzonados. Nonwoven fabrics are a class of textile material made up of a disordered fiber network linked by either thermal, chemical or mechanical bonds. They present lower stiffness and strength (as well as processing cost) than the woven counterparts but much higher deformability and energy absorption capability and are used in many different engineering applications (including thermal insulation, geotextiles, fireproof layers, filtration and water absorption, ballistic impact, etc). In particular, needle-punched nonwoven fabrics manufactured with high strength fibers present an excellent performance for ballistic protection, providing the same ballistic protection with one third of the areal weight as compared to dry woven fabrics. Nevertheless, very little is known about their deformation and fracture micromechanisms at the microscopic level and how they contribute to the macroscopic mechanical properties. This lack of knowledge hinders the optimization of their mechanical performance and also limits the development of physically-based models of the mechanical behavior that can be used in the design of structural components with these materials. In this thesis, a thorough study was carried out to ascertain the micromechanisms of deformation and the mechanical properties of a needle-punched nonwoven fabric made up by ultra high molecular weight polyethylene fibers. The deformation and energy dissipation processes were characterized in detail by a combination of experimental techniques (macroscopic mechanical tests at quasi-static and high strain rates, ballistic impact, single fiber and multi fiber pull-out tests, optical microscopy, X-ray computed tomography and wide angle X-ray diffraction) that provided information of the dominant mechanisms at different length scales. The macroscopic mechanical tests showed that the nonwoven fabric presented an outstanding strength and energy absorption capacity. It was found that fibers were initially curved and the load was transferred within the fabric through the random and isotropic network of knots created by needlepunching, leading to the formation of an active fiber network. Uncurling and stretching of the active fibers was followed by fiber sliding and pull-out from the entanglement points. Most of the strength and energy dissipation was provided by the extraction of the active fibers from the knots and final fracture occurred by the total disentanglement of the fiber network in a given section at which the macroscopic deformation was localized. However, although the initial fiber orientation distribution was isotropic, the mechanical properties (in terms of stiffness, strength and energy absorption) were highly anisotropic. Pull-out tests of multiple fibers at different orientations showed that structure of the knots connected more fibers in the transverse direction as compared with the machine direction. The better fiber interconnection along the transverse direction led to a denser active fiber skeleton, enhancing the mechanical response. In terms of affinity, fabrics deformed along the transverse direction essentially displayed affine deformation {i.e. the macroscopic strain was directly transferred to the fibers by the surrounding fabric, while fabrics deformed along the machine direction underwent non-affine deformation, and most of the macroscopic strain was not transferred to the fibers. Based on these experimental observations, a constitutive model for the mechanical behavior of the mechanically-entangled nonwoven fiber network was developed. The model accounted for the effects of non-affine deformation, anisotropic connectivity induced by the entanglement points, fiber uncurling and re-orientation as well as fiber disentanglement and pull-out from the knots. The model provided the constitutive response for a mesodomain of the fabric corresponding to the volume associated to a finite element and is divided in two blocks. The first one was the network model which established the relationship between the macroscopic deformation gradient and the microscopic response obtained by integrating the response of the fibers in the mesodomain. The second one was the fiber model, which took into account the deformation features of each set of fibers in the mesodomain, including non-affinity, uncurling, pull-out and disentanglement. As far as possible, a clear physical meaning is given to the model parameters, so they can be identified by means of independent tests. The numerical simulations based on the model were in very good agreement with the experimental results of in-plane and ballistic mechanical response of the fabrics in terms of the macroscopic mechanical response and of the micromechanisms of deformation. In addition, it provided additional information about the influence of the microstructural features (fiber orientation, anisotropic fiber connectivity, affinity) on the mechanical performance of mechanically-entangled nonwoven fabrics.