464 resultados para BRST quantization
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.
Resumo:
Large variations in human actions lead to major challenges in computer vision research. Several algorithms are designed to solve the challenges. Algorithms that stand apart, help in solving the challenge in addition to performing faster and efficient manner. In this paper, we propose a human cognition inspired projection based learning for person-independent human action recognition in the H.264/AVC compressed domain and demonstrate a PBL-McRBEN based approach to help take the machine learning algorithms to the next level. Here, we use gradient image based feature extraction process where the motion vectors and quantization parameters are extracted and these are studied temporally to form several Group of Pictures (GoP). The GoP is then considered individually for two different bench mark data sets and the results are classified using person independent human action recognition. The functional relationship is studied using Projection Based Learning algorithm of the Meta-cognitive Radial Basis Function Network (PBL-McRBFN) which has a cognitive and meta-cognitive component. The cognitive component is a radial basis function network while the Meta-Cognitive Component(MCC) employs self regulation. The McC emulates human cognition like learning to achieve better performance. Performance of the proposed approach can handle sparse information in compressed video domain and provides more accuracy than other pixel domain counterparts. Performance of the feature extraction process achieved more than 90% accuracy using the PTIL-McRBFN which catalyzes the speed of the proposed high speed action recognition algorithm. We have conducted twenty random trials to find the performance in GoP. The results are also compared with other well known classifiers in machine learning literature.
Resumo:
In this paper, we propose a new state transition based embedding (STBE) technique for audio watermarking with high fidelity. Furthermore, we propose a new correlation based encoding (CBE) scheme for binary logo image in order to enhance the payload capacity. The result of CBE is also compared with standard run-length encoding (RLE) compression and Huffman schemes. Most of the watermarking algorithms are based on modulating selected transform domain feature of an audio segment in order to embed given watermark bit. In the proposed STBE method instead of modulating feature of each and every segment to embed data, our aim is to retain the default value of this feature for most of the segments. Thus, a high quality of watermarked audio is maintained. Here, the difference between the mean values (Mdiff) of insignificant complex cepstrum transform (CCT) coefficients of down-sampled subsets is selected as a robust feature for embedding. Mdiff values of the frames are changed only when certain conditions are met. Hence, almost 50% of the times, segments are not changed and still STBE can convey watermark information at receiver side. STBE also exhibits a partial restoration feature by which the watermarked audio can be restored partially after extraction of the watermark at detector side. The psychoacoustic model analysis showed that the noise-masking ratio (NMR) of our system is less than -10dB. As amplitude scaling in time domain does not affect selected insignificant CCT coefficients, strong invariance towards amplitude scaling attacks is also proved theoretically. Experimental results reveal that the proposed watermarking scheme maintains high audio quality and are simultaneously robust to general attacks like MP3 compression, amplitude scaling, additive noise, re-quantization, etc.
Resumo:
Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.
Resumo:
In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H.264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of the proposed work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can result in reduced hardware utilization and faster recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust to outdoor as well as indoor testing scenarios. We have evaluated the performance of the proposed method on two benchmark action datasets and achieved more than 85 % accuracy. The proposed algorithm classifies actions with speed (> 2,000 fps) approximately 100 times faster than existing state-of-the-art pixel-domain algorithms.
Resumo:
Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here, we study the role of the dark matter halo on the grand-design, m = 2, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First, a typical superthin, LSB galaxy UGC 7321 is studied by taking only the galactic disc, modelled as a fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, these are not triggered in LSB galaxies. For comparison, we carried out a similar analysis for the Galaxy, for which the dark matter halo does not dominate in the inner regions. We show that here too the dark matter halo has little effect, hence the disc embedded in a halo is also able to support global modes. The derived pattern speed of the global mode agrees fairly well with the observed value for the Galaxy.
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Resumo:
We revisit the problem of temporal self organization using activity diffusion based on the neural gas (NGAS) algorithm. Using a potential function formulation motivated by a spatio-temporal metric, we derive an adaptation rule for dynamic vector quantization of data. Simulations results show that our algorithm learns the input distribution and time correlation much faster compared to the static neural gas method over the same data sequence under similar training conditions.
Resumo:
Fingerprints are used for identification in forensics and are classified into Manual and Automatic. Automatic fingerprint identification system is classified into Latent and Exemplar. A novel Exemplar technique of Fingerprint Image Verification using Dictionary Learning (FIVDL) is proposed to improve the performance of low quality fingerprints, where Dictionary learning method reduces the time complexity by using block processing instead of pixel processing. The dynamic range of an image is adjusted by using Successive Mean Quantization Transform (SMQT) technique and the frequency domain noise is reduced using spectral frequency Histogram Equalization. Then, an adaptive nonlinear dynamic range adjustment technique is utilized to determine the local spectral features on corresponding fingerprint ridge frequency and orientation. The dictionary is constructed using spatial fundamental frequency that is determined from the spectral features. These dictionaries help in removing the spurious noise present in fingerprints and reduce the time complexity by using block processing instead of pixel processing. Further, dictionaries are used to reconstruct the image for matching. The proposed FIVDL is verified on FVC database sets and Experimental result shows an improvement over the state-of-the-art techniques. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
311 p. : il.
Resumo:
Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe.
Initial phase of LIGO started in 2002, and since then data was collected during six science runs. Instrument sensitivity was improving from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010.
In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted till 2014.
This thesis describes results of commissioning work done at LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers.
The first part of this thesis is devoted to the description of methods for bringing interferometer to the linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details.
Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in real time. Sensitivity analysis was done to understand and eliminate noise sources of the instrument.
Coupling of noise sources to gravitational wave channel can be reduced if robust feedforward and optimal feedback control loops are implemented. The last part of this thesis describes static and adaptive feedforward noise cancellation techniques applied to Advanced LIGO interferometers and tested at the 40m prototype. Applications of optimal time domain feedback control techniques and estimators to aLIGO control loops are also discussed.
Commissioning work is still ongoing at the sites. First science run of advanced LIGO is planned for September 2015 and will last for 3-4 months. This run will be followed by a set of small instrument upgrades that will be installed on a time scale of few months. Second science run will start in spring 2016 and last for about 6 months. Since current sensitivity of advanced LIGO is already more than factor of 3 higher compared to initial detectors and keeps improving on a monthly basis, upcoming science runs have a good chance for the first direct detection of gravitational waves.
Resumo:
The numerical solutions of binary-phase (0, tau) gratings for one-dimensional array illuminators up to 32 are presented. Some fabrication errors, which are due to position-quantization errors, phase errors, dilation (or erosion) errors, and the side-slope error, are calculated and show that even-number array illuminators are superior to odd-number array illuminators when these fabrication errors are considered. One (0, tau) binary-phase, 8 x 16 array illuminator made with the wet-chemical-etching method is given in this paper.
Resumo:
Somente no ano de 2011 foram adquiridos mais de 1.000TB de novos registros digitais de imagem advindos de Sensoriamento Remoto orbital. Tal gama de registros, que possui uma progressão geométrica crescente, é adicionada, anualmente, a incrível e extraordinária massa de dados de imagens orbitais já existentes da superfície da Terra (adquiridos desde a década de 70 do século passado). Esta quantidade maciça de registros, onde a grande maioria sequer foi processada, requer ferramentas computacionais que permitam o reconhecimento automático de padrões de imagem desejados, de modo a permitir a extração dos objetos geográficos e de alvos de interesse, de forma mais rápida e concisa. A proposta de tal reconhecimento ser realizado automaticamente por meio da integração de técnicas de Análise Espectral e de Inteligência Computacional com base no Conhecimento adquirido por especialista em imagem foi implementada na forma de um integrador com base nas técnicas de Redes Neurais Computacionais (ou Artificiais) (através do Mapa de Características Auto- Organizáveis de Kohonen SOFM) e de Lógica Difusa ou Fuzzy (através de Mamdani). Estas foram aplicadas às assinaturas espectrais de cada padrão de interesse, formadas pelos níveis de quantização ou níveis de cinza do respectivo padrão em cada uma das bandas espectrais, de forma que a classificação dos padrões irá depender, de forma indissociável, da correlação das assinaturas espectrais nas seis bandas do sensor, tal qual o trabalho dos especialistas em imagens. Foram utilizadas as bandas 1 a 5 e 7 do satélite LANDSAT-5 para a determinação de cinco classes/alvos de interesse da cobertura e ocupação terrestre em três recortes da área-teste, situados no Estado do Rio de Janeiro (Guaratiba, Mangaratiba e Magé) nesta integração, com confrontação dos resultados obtidos com aqueles derivados da interpretação da especialista em imagens, a qual foi corroborada através de verificação da verdade terrestre. Houve também a comparação dos resultados obtidos no integrador com dois sistemas computacionais comerciais (IDRISI Taiga e ENVI 4.8), no que tange a qualidade da classificação (índice Kappa) e tempo de resposta. O integrador, com classificações híbridas (supervisionadas e não supervisionadas) em sua implementação, provou ser eficaz no reconhecimento automático (não supervisionado) de padrões multiespectrais e no aprendizado destes padrões, pois para cada uma das entradas dos recortes da área-teste, menor foi o aprendizado necessário para sua classificação alcançar um acerto médio final de 87%, frente às classificações da especialista em imagem. A sua eficácia também foi comprovada frente aos sistemas computacionais testados, com índice Kappa médio de 0,86.
Resumo:
Os aspectos quânticos de teorias de campo formuladas no espaço-tempo não comutativo têm sido amplamente estudados ao longo dos anos. Um dos principais aspectos é o que na literatura ficou conhecido como mixing IR/UV. Trata-se de uma mistura das divergências, que foi vista pela primeira vez no trabalho de Minwalla et al [28], onde num estudo do campo escalar não comutativo com interação quártica vemos já a 1 loop que o tadpole tem uma divergência UV associada a sua parte planar e, junto com ela, temos uma divergência IR associada com um gráfico não planar. Essa mistura torna a teoria não renormalizável. Dado tal problema, houve então uma busca por mecanismos que separassem essas divergências a fim de termos teorias renormalizáveis. Um mecanismo proposto foi a adição de um termo não local na ação U*(1) para que esta seja estável.Neste trabalho, estudamos através da renormalização algébrica a estabilidade deste modelo. Para tal, precisamos localizar o operador não local através de campos auxiliares e seus respectivos ghosts (metodo de Zwanziger) na intenção de retirar os graus de liberdade indesejados que surgem. Usamos o approachda quebra soft de BRST para analisar o termo que quebra BRST, que consiste em reescrevermos tal termo com o auxílio de fontes externas que num determinado limite físico voltam ao termo original.Como resultado, vimos que a teoria com a adição deste termo na ação só é renormalizável se tivermos que introduzir novos termos, sendo alguns deles quárticos. Porém, estes termos mudam a forma do propagador, que não desacopla as divergências. Um outro aspecto que podemos salientar é que, dependendo da escolha de alguns parâmetros, o propagador dá indícios de termos um fótonconfinante, seguindo o critério de Wilson e o critério da perda da positividade do propagador.