1000 resultados para BERING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of ongoing circulation studies in the Arctic, seawater samples for dissolved Ba concentrations were obtained during Sep.-Oct., 1992 at several locations in the Bering Strait, Eastern Chukchi and Southern Beaufort Seas. The results reveal a dynamic rang (10 to 150 nmol/kg) for this element in the Arctic equal to or greater than that in combined Atlantic, Indian and Pacific oceans. Lowest levels are observed in surface waters, with values tending to decrease northwards in the direction of currents generally flowing frorn the Bering Strait along the Alaskan coast. Low surfacc concentrations tend to be accompanied by relatively enriched near bottom levels. On the basis of these spatial distributions, hydrographic observations and a knowledge of its behavior in other marine settings, it appears that Ba can be significantly depleted from surface waters as a result of the highly seasonal biological aclivities over Arctic marginal shelves. Removal at the surface is counteracted to some extent by regeneration at depth or in the sediments and by riverine inputs. The biologically related drawdown is likely to enhance the contrast between 'background' surface Ba levels in the Arctic and waters imprinted by regeneration and/or rivers, These preliminary findings suggest that Ba holds particular promise for tracing river waters and the ventilation of halodine waters hy laterally sinking brines produced during ice formation over the shelves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from sections across the Eurasian Basin of the Arctic Ocean occupied by the German Research Vessel Polarstern in 1987 and by the Swedish icebreaker Oden in 1991 are used to derive information on the freshwater balance of the Arctic Ocean halocline and on the sources of the deep waters of the Nansen, Amundsen and Makarov basins. Salinity, d18O and mass balances allow separation of the river-runoff and the sea-ice meltwater fractions contained in the Arctic halocline. This provides the basis for tracking the river-runoff signal from the shelf seas across the central Arctic Ocean to Fram Strait. The halocline has to be divided into at least three lateral regimes: the southern Nansen Basin with net sea-ice melting, the northern Nansen Basin and Amundsen Basin with net sea-ice formation and increasing river-runoff fractions, and the Canadian Basin with minimum sea-ice meltwater and maximum river-runoff fractions and water of Pacific origin. In the Canadian Basin, silicate is used as a tracer to identify Pacific water entering through Bering Strait and an attempt is made to quantify its influence on the halocline waters of the Canadian Basin. For this purpose literature data from the CESAR and LOREX ice camps are used. Based on mass balances and depending on the value of precipitation over the area of the Arctic Ocean the average mean residence time of the river-runoff fraction contained in the Arctic Ocean halocline is determined to be about 14 or 11 years. Water column inventories of river-runoff and sea-ice meltwater are calculated for a section just north of Fram Strait and implications for the ice export rate through Fram Strait are discussed. Salinity, tritium, 3He and the d18O ratio of halocline waters sampled during the 1987 Polarstern cruise to the Nansen Basin are used to estimate the mean residence time of the river-runoff component in the halocline and on the shelves of the Arctic Ocean. These estimates are done by comparing ages of the halocline waters based on a combination of tracers yielding different time information: the tritium 'vintage' age which records the time that has passed since the river-runoff entered the shelf and the tritium/3He age which reflects the time since the shelf waters left the shelf. The difference between the ages determined by these two methods is about 3 to 6 years. Correction for the initial tritium/3He age of the shelf waters (about 0.5 to 1.5 years) yields a mean residence time of the river-runoff on the shelves of about 3.5 ± 2 years. Comparison of the 18O/16O ratios of shelf water, Atlantic water and the deep waters of the Arctic Ocean indicate that the sources of the deep and bottom waters of the Eurasian Basin are located in the Barents and Kara seas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Kamchatka Peninsula of northeastern Russia is located along the northwestern margin of the Bering Sea and consists of zones of complexly deformed accreted terranes. Along the northern portion of the peninsula, progressing from then orthwestem Bering Sea inland the Olyutorskiy, Ukelayat, and Koryak superterranes area acreted to the Okhotsk-Chukotsk volcanic-plutonic bell in northern-most Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlap terranes and units of the Koryak superterrane and constrains their accretion time with this region of the North America plate. Ophiolite complexes, widespread within the Koryak superterrane, are associated with serpentinite melanges and some of the ophiolite terranes include large portions of weakly serpentinized hyperbasites, layered gabbro, sheeted dikes, and pillow basalts outcropping as internally coherent blocks within a sheared melange matrix. Interpretation of magnetic anomalies allow the correlation of the Ukelayat with the West Kamchatka and Sredinny Range superterranes. The Olyutorskiy composite terrane may be correlated with the central and southern Kamchatka Peninsula Litke, Eastern Ranges and Vetlov composite terranes. The most "out-board" of the central and southern Kamchatka Peninsula terranes is the Kronotsky composite terrane, weil exposed along the Kamchatka, Kronotsky and Shipunsky Capes. Using regional geological constraints, paleomagnetism, and plate kinematic models for the Pacific basin a regional model can be proposed in which accretion of the Koryak composite terrane to the North America plate occurs during the Campanian-Maastrichtian, followed by the accretion of the Olyutorskiy composite terrane in the Middle Eocene, and the Late Oligocene-Early Miocene collision of the Kronotsky composite terrane. A revised age estimate of a key overlapping sedirnentary sequence of the Koryak superterrane, calibrated with new Ar40/Ar39 data, supports its Late Cretaceous accretion age.