979 resultados para B lymphocytes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To improve cancer chemotherapy, a better understanding of the molecular mechanisms of drug resistance is essential. To identify the molecules responsible for drug resistance that is unrelated to MDR1 or MRP gene products, a eukaryotic expression cDNA library of cis-diamminedichloroplatinum(II) (CDDP)-resistant ovarian cancer TYKnuR cells was introduced into Cos-7 cells. After repeated CDDP selection, cDNA homologous to murine semaphorin E was isolated from surviving cells. Human semaphorin E (H-sema E) was overexpressed in CDDP-resistant cell lines and was readily induced not only by diverse chemotherapeutic drugs but also by x-ray and UV irradiation. Transfection of H-sema E conferred a drug-resistant phenotype to CDDP-sensitive cells. In addition, the aberrant expression of H-sema E protein was detected immunohistochemically in 14 of 42 (33.3%) recurrent squamous cell carcinomas removed at autopsy after extensive radiochemotherapy. Recently, another member of the semaphorin family, CD100, was shown to significantly improve the viability of B lymphocytes. These results suggest the involvement of semaphorins in diverse cell survival mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The c-Abl tyrosine kinase and the p53 tumor suppressor protein interact functionally and biochemically in cellular genotoxic stress response pathways and are implicated as downstream mediators of ATM (ataxia-telangiectasia mutated). This fact led us to study genetic interactions in vivo between c-Abl and p53 by examining the phenotype of mice and cells deficient in both proteins. c-Abl-null mice show high neonatal mortality and decreased B lymphocytes, whereas p53-null mice are prone to tumor development. Surprisingly, mice doubly deficient in both c-Abl and p53 are not viable, suggesting that c-Abl and p53 together contribute to an essential function required for normal development. Fibroblasts lacking both c-Abl and p53 were similar to fibroblasts deficient in p53 alone, showing loss of the G1/S cell-cycle checkpoint and similar clonogenic survival after ionizing radiation. Fibroblasts deficient in both c-Abl and p53 show reduced growth in culture, as manifested by reduction in the rate of proliferation, saturation density, and colony formation, compared with fibroblasts lacking p53 alone. This defect could be restored by reconstitution of c-Abl expression. Taken together, these results indicate that the ATM phenotype cannot be explained solely by loss of c-Abl and p53 and that c-Abl contributes to enhanced proliferation of p53-deficient cells. Inhibition of c-Abl function may be a therapeutic strategy to target p53-deficient cells selectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transgenic mice expressing human HOX11 in B lymphocytes die prematurely from lymphomas that initiate in the spleen and frequently disseminate to distant sites. Preneoplastic hematopoiesis in these mice is unperturbed. We now report that expression of the HOX11 transgene does not affect the ability of dendritic cells (DCs) to process and present foreign peptides and activate antigen-specific T cell responses. We also show that nontransgenic DCs presenting peptides derived from the human HOX11 protein are highly efficient stimulators of autologous T cells, whereas transgenic T cells are nonresponsive to peptides derived from the HOX11 transgene and the murine Meis1 protein. HOX11 transgenic mice thus show normal development of tolerance to immunogenic antigens expressed throughout B cell maturation. DCs pulsed with cell lysates prepared from lymphomas, obtained from HOX11 transgenic mice with terminal lymphoma, activate T cells from nontransgenic and premalignant transgenic mice, whereas T cells isolated from lymphomatous transgenic mice are nonresponsive to autologous tumor cell antigens. These data indicate that HOX11 lymphoma cells express tumor-rejection antigens that are recognized as foreign in healthy transgenic mice and that lymphomagenesis is associated with the induction of anergy to tumor antigen-specific T cells. These findings are highly relevant for the development of immunotherapeutic protocols for the treatment of lymphoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The murine γ-herpesvirus 68 replicates in epithelial sites after intranasal challenge, then persists in various cell types, including B lymphocytes. Mice that lack CD4+ T cells (I-Ab−/−) control the acute infection, but suffer an ultimately lethal recrudescence of lytic viral replication in the respiratory tract. The consequences of CD4+ T cell deficiency for the generation and maintenance of murine γ-herpesvirus 68-specific CD8+ set now have been analyzed by direct staining with viral peptides bound to major histocompatibility complex class I tetramers and by a spectrum of functional assays. Both acutely and during viral reactivation, the CD8+ T cell responses in the I-Ab−/− group were no less substantial than in the I-Ab+/+ controls. Indeed, virus-specific CD8+ T cell numbers were increased in the lymphoid tissue of clinically compromised I-Ab−/− mice, although relatively few of the potential cytotoxic T lymphocyte effectors were recruited back to the site of pathology in the lung. Thus the viral reactivation that occurs in the absence of CD4+ T cells was not associated with any exhaustion of the virus-specific cytotoxic T lymphocyte response. It seems that CD8+ T cells alone are insufficient to maintain long-term control of this persistent γ-herpesvirus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have compared the molecular architecture and function of the myeloperoxidase upstream enhancer in multipotential versus granulocyte-committed hematopoietic progenitor cells. We show that the enhancer is accessible in multipotential cell chromatin but functionally incompetent before granulocyte commitment. Multipotential cells contain both Pu1 and C-EBP alpha as enhancer-binding activities. Pu1 is unphosphorylated in both multipotential and granulocyte-committed cells but is phosphorylated in B lymphocytes, raising the possibility that differential phosphorylation may play a role in specifying its lymphoid versus myeloid functions. C-EBP alpha exists as multiple phosphorylated forms in the nucleus of both multipotential and granulocyte-committed cells. C-EBP beta is unphosphorylated and cytoplasmically localized in multipotential cells but exists as a phosphorylated nuclear enhancer-binding activity in granulocyte-committed cells. Granulocyte colony-stimulating factor-induced granulocytic differentiation of multipotential progenitor cells results in activation of C-EBP delta expression and functional recruitment of C-EBP delta and C-EBP beta to the nucleus. Our results implicate Pu1 and the C-EBP family as critical regulators of myeloperoxidase gene expression and are consistent with a model in which a temporal exchange of C-EBP isoforms at the myeloperoxidase enhancer mediates the transition from a primed state in multipotential cells to a transcriptionally active configuration in promyelocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyses of the human PAX-5 locus and of the 5' region of the mouse Pax-5 gene revealed that transcription from two distinct promoters results in splicing of two alternative 5' exons to the common coding sequences of exons 2-10. Transcription from the upstream promoter initiates downstream of a TATA box and occurs predominantly in B-lymphocytes, whereas the TATA-less downstream promoter is active in all Pax-5-expressing tissues. The human PAX-5 gene is located on chromosome 9 in region p13, which is involved in t(9;14)(pl3;q32) translocations recurring in small lymphocytic lymphomas of the plasmacytoid subtype and in derived large-cell lymphomas. A previous molecular analysis of a t(9;14) breakpoint from a diffuse large-cell lymphoma (KIS-1) demonstrated that the immunoglobulin heavy-chain (IgH) locus on 14q32 was juxtaposed to chromosome 9p13 sequences of unknown function [Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T. & Honjo, T. (1990) Proc. Natl. Acad. Sci. USA 87,628-632]. Here we show that the KIS-1 translocation breakpoint is located 1807 base pairs upstream of exon 1A of PAX-5, thus bringing the potent Emu enhancer of the IgH gene into close proximity of the PAX-5 promoters. These data suggest that deregulation of PAX-5 gene transcription by the t(9;14)(pl3;q32) translocation contributes to the pathogenesis of small lymphocytic lymphomas with plasmacytoid differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complement receptor 1 (CR1, CD35) and complement receptor 2 (CR2, CD21) have been implicated as regulators of B-cell activation. We explored the role of these receptors in the development of humoral immunity by generating CR1- and CR2-deficient mice using gene-targeting techniques. These mice have normal basal levels of IgM and of IgG isotypes. B- and T-cell development are overtly normal. Nevertheless, B-cell responses to low and high doses of a T-cell-dependent antigen are impaired with decreased titers of antigen-specific IgM and IgG isotypes. This defect is not complete because there is still partial activation of B lymphocytes during the primary immune response, with generation of splenic germinal centers and a detectable, although reduced, secondary antibody response. These data suggest that certain T-dependent antigens manifest an absolute dependence on complement receptors for the initiation of a normally robust immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of alternatively spliced epsilon transcripts have been detected in IgE-producing B cells, in addition to the mRNAs encoding the classical membrane and secreted IgE heavy (H) chains. In a recent study, we examined the protein products of three of these alternatively spliced isoforms and found that they are intracellularly retained and degraded because of their inability to assemble into complete IgE molecules. We have now similarly examined a more recently described epsilon mRNA species that is generated by splicing between a donor splice site immediately upstream of the stop codon in the H-chain constant region exon 4 (CH4) and an acceptor site located in the 3' part of the second membrane exon. We show that this isoform is efficiently secreted by both plasma cells and B lymphocytes and therefore represents a second secreted IgE isoform (epsilon S2). The epsilon S2 H chain is only six amino acids longer than the classical secreted Ig H chain (epsilon S1) and contains a C-terminal cysteine, which is a characteristic sequence feature of mu and alpha H chains. However, unlike IgM and IgA, the epsilon S2 C-terminal cysteine (Cys-554) does not induce polymerization of H2L2 molecules (where L is light chain), but rather creates a disulfide bond between the two H chains that increases the rate of association into covalently bound H2L2 monomers. This C-terminal cysteine also does not function as an intracellular retention element because the epsilon S2 isoform was secreted in amounts equal to that of the epsilon S1, both in B lymphocytes and in plasma cells. The epsilon S2 H chains secreted by B lymphocytes differed from the epsilon S1 H chains in the extent of glycosylation. Interestingly, a difference in glycosylation between B-lymphocytes and plasma cells was also noted for both isoforms. The presence of the Cys-554 also allowed the identification of a distinctive asymmetric pathway of IgE assembly, common to both types of epsilon H chains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypermutation can be defined as an enhancement of the spontaneous mutation rate which the organism uses in certain types of differentiated cells where a high mutation rate is advantageous. At the immunoglobulin loci this process increases the mutation rate > 10(5)-fold over the normal, spontaneous rate. Its proximate cause is called the immunoglobulin mutator system. The most important function of this system is to improve antibody affinity in an ongoing response; it is turned on and off during the differentiation of B lymphocytes. We have established an in vitro system to study hypermutation by transfecting a rearranged mu gene into a cell line in which an immunoglobulin mutator has been demonstrated. A construct containing the mu gene and the 3' kappa enhancer has all the cis-acting elements necessary for hypermutation of the endogenous gene segments encoding the variable region. The activity of the mutator does not seem to depend strongly on the position of the transfected gene in the genome. The mutator is not active in transformed cells of a later differentiation stage. It is also not active on a transfected lacZ gene. These results are consistent with the specificity of the mutator system being maintained and make it possible to delineate cis and trans mutator elements in vitro. Surprisingly, the mutator preferentially targets G-C base pairs. Two hypotheses are discussed: (i) the immunoglobulin mutator system in mammals consists of several mutators, of which the mutator described here is only one; or (ii) the primary specificity of the system is biased toward mutation of G-C base pairs, but this specificity is obscured by antigenic selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successful gene transfer into stem cells would provide a potentially useful therapeutic modality for treatment of inherited and acquired disorders affecting hematopoietic tissues. Coculture of primate bone marrow cells with retroviral producer cells, autologous stroma, or an engineered stromal cell line expressing human stem cell factor has resulted in a low efficiency of gene transfer as reflected by the presence of 0.1-5% of genetically modified cells in the blood of reconstituted animals. Our experiments in a nonhuman primate model were designed to explore various transduction protocols that did not involve coculture in an effort to define clinically useful conditions and to enhance transduction efficiency of repopulating cells. We report the presence of genetically modified cells at levels ranging from 0.1% (granulocytes) to 14% (B lymphocytes) more than 1 year following reconstitution of myeloablated animals with CD34+ immunoselected cells transduced in suspension culture with cytokines for 4 days with a retrovirus containing the glucocerebrosidase gene. A period of prestimulation for 7 days in the presence of autologous stroma separated from the CD34+ cells by a porous membrane did not appear to enhance transduction efficiency. Infusion of transduced CD34+ cells into animals without myeloablation resulted in only transient appearance of genetically modified cells in peripheral blood. Our results document that retroviral transduction of primate repopulating cells can be achieved without coculture with stroma or producer cells and that the proportion of genetically modified cells may be highest in the B-lymphoid lineage under the given transduction conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of the reactivity of IgM with self-antigens in tissues by a quantitative immunoblotting technique showed striking invariance among newborns in the human and in the mouse. The self-reactive repertoire of IgM of adults was also markedly conserved; it comprised most anti-self reactivities that prevailed among neonates. Multivariate analysis confirmed the homogeneity of IgM repertoires of neonates toward self- and non-self-antigens. Multivariate analysis discriminated between newborn and adult repertoires for reactivity with two of five sources of self-proteins and with non-self-antigens. Our observations support the concept that naturally activated B lymphocytes are selected early in development and throughout life for reactivity with a restricted set of self-antigens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EBNA 2 (Epstein-Barr virus nuclear antigen 2) is an acidic transactivator essential for EBV transformation of B lymphocytes. We show that EBNA 2 directly interacts with general transcription factor IIH. Glutathione S-transferase (GST)-EBNA 2 acidic domain fusion protein depleted transcription factor IIH activity from a TFIIH nuclear fraction. The p89 (ERCC3), p80 (ERCC2), and p62 subunits of TFIIH were among the proteins retained by GST-EBNA 2. Eluates from the GST-EBNA 2 beads reconstituted activity in a TFIIH-dependent in vitro transcription assay. The p62 and p80 subunits of TFIIH independently bound to GST-EBNA 2, whereas the p34 subunit of TFIIH only bound in the presence of p62. A Trp-->Thr mutation in the EBNA 2 acidic domain abolishes EBNA 2 transactivation in vivo and greatly compromised EBNA 2 association with TFIIH activity and with the p62 and p80 subunits, providing a link between EBNA 2 transactivation and these interactions. Antibodies directed against the p62 subunit of TFIIH coimmunoprecipitated EBNA 2 from EBV-transformed B lymphocytes, indicating that EBNA 2 associates with TFIIH in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.