979 resultados para Asymptotic Mean Squared Errors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide an incremental quantile estimator for Non-stationary Streaming Data. We propose a method for simultaneous estimation of multiple quantiles corresponding to the given probability levels from streaming data. Due to the limitations of the memory, it is not feasible to compute the quantiles by storing the data. So estimating the quantiles as the data pass by is the only possibility. This can be effective in network measurement. To provide the minimum of the mean-squared error of the estimation, we use parabolic approximation and for comparison we simulate the results for different number of runs and using both linear and parabolic approximations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple method was proposed for determination of paracetamol and ibuprofen in tablets, based on UV measurements and partial least squares. The procedure was performed at pH 10.5, in the concentration ranges 3.00-15.00 µg ml-1 (paracetamol) and 2.40-12.00 µg ml-1 (ibuprofen). The model was able to predict paracetamol and ibuprofen in synthetic mixtures with root mean squares errors of prediction of 0.12 and 0.17 µg ml-1, respectively. Figures of merit (sensitivity, limit of detection and precision) were also estimated. The results achieved for the determination of these drugs in pharmaceutical formulations were in agreement with label claims and verified by HPLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to demonstrate the efficient utilization of the Principal Components Analysis (PCA) as a method to pre-process the original multivariate data, that is rewrite in a new matrix with principal components sorted by it's accumulated variance. The Artificial Neural Network (ANN) with backpropagation algorithm is trained, using this pre-processed data set derived from the PCA method, representing 90.02% of accumulated variance of the original data, as input. The training goal is modeling Dissolved Oxygen using information of other physical and chemical parameters. The water samples used in the experiments are gathered from the Paraíba do Sul River in São Paulo State, Brazil. The smallest Mean Square Errors (MSE) is used to compare the results of the different architectures and choose the best. The utilization of this method allowed the reduction of more than 20% of the input data, which contributed directly for the shorting time and computational effort in the ANN training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased heart rate variability (HRV) and high-frequency content of the terminal region of the ventricular activation of signal-averaged ECG (SAECG) have been reported in athletes. The present study investigates HRV and SAECG parameters as predictors of maximal aerobic power (VO2max) in athletes. HRV, SAECG and VO2max were determined in 18 high-performance long-distance (25 ± 6 years; 17 males) runners 24 h after a training session. Clinical visits, ECG and VO2max determination were scheduled for all athletes during thew training period. A group of 18 untrained healthy volunteers matched for age, gender, and body surface area was included as controls. SAECG was acquired in the resting supine position for 15 min and processed to extract average RR interval (Mean-RR) and root mean squared standard deviation (RMSSD) of the difference of two consecutive normal RR intervals. SAECG variables analyzed in the vector magnitude with 40-250 Hz band-pass bi-directional filtering were: total and 40-µV terminal (LAS40) duration of ventricular activation, RMS voltage of total (RMST) and of the 40-ms terminal region of ventricular activation. Linear and multivariate stepwise logistic regressions oriented by inter-group comparisons were adjusted in significant variables in order to predict VO2max, with a P < 0.05 considered to be significant. VO2max correlated significantly (P < 0.05) with RMST (r = 0.77), Mean-RR (r = 0.62), RMSSD (r = 0.47), and LAS40 (r = -0.39). RMST was the independent predictor of VO2max. In athletes, HRV and high-frequency components of the SAECG correlate with VO2max and the high-frequency content of SAECG is an independent predictor of VO2max.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Paul Allard : Département de kinésiologie, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les logiciels utilisés sont Splus et R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les travaux portent sur l’estimation de la variance dans le cas d’une non- réponse partielle traitée par une procédure d’imputation. Traiter les valeurs imputées comme si elles avaient été observées peut mener à une sous-estimation substantielle de la variance des estimateurs ponctuels. Les estimateurs de variance usuels reposent sur la disponibilité des probabilités d’inclusion d’ordre deux, qui sont parfois difficiles (voire impossibles) à calculer. Nous proposons d’examiner les propriétés d’estimateurs de variance obtenus au moyen d’approximations des probabilités d’inclusion d’ordre deux. Ces approximations s’expriment comme une fonction des probabilités d’inclusion d’ordre un et sont généralement valides pour des plans à grande entropie. Les résultats d’une étude de simulation, évaluant les propriétés des estimateurs de variance proposés en termes de biais et d’erreur quadratique moyenne, seront présentés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suite à un stage avec la compagnie Hatch, nous possédons des jeux de données composés de séries chronologiques de vitesses de vent mesurées à divers sites dans le monde, sur plusieurs années. Les ingénieurs éoliens de la compagnie Hatch utilisent ces jeux de données conjointement aux banques de données d’Environnement Canada pour évaluer le potentiel éolien afin de savoir s’il vaut la peine d’installer des éoliennes à ces endroits. Depuis quelques années, des compagnies offrent des simulations méso-échelle de vitesses de vent, basées sur divers indices environnementaux de l’endroit à évaluer. Les ingénieurs éoliens veulent savoir s’il vaut la peine de payer pour ces données simulées, donc si celles-ci peuvent être utiles lors de l’estimation de la production d’énergie éolienne et si elles pourraient être utilisées lors de la prévision de la vitesse du vent long terme. De plus, comme l’on possède des données mesurées de vitesses de vent, l’on en profitera pour tester à partir de diverses méthodes statistiques différentes étapes de l’estimation de la production d’énergie. L’on verra les méthodes d’extrapolation de la vitesse du vent à la hauteur d’une turbine éolienne et l’on évaluera ces méthodes à l’aide de l’erreur quadratique moyenne. Aussi, on étudiera la modélisation de la vitesse du vent par la distributionWeibull et la variation de la distribution de la vitesse dans le temps. Finalement, l’on verra à partir de la validation croisée et du bootstrap si l’utilisation de données méso-échelle est préférable à celle de données des stations de référence, en plus de tester un modèle où les deux types de données sont utilisées pour prédire la vitesse du vent. Nous testerons la méthodologie globale présentement utilisée par les ingénieurs éoliens pour l’estimation de la production d’énergie d’un point de vue statistique, puis tenterons de proposer des changements à cette méthodologie, qui pourraient améliorer l’estimation de la production d’énergie annuelle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biclustering is simultaneous clustering of both rows and columns of a data matrix. A measure called Mean Squared Residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within a submatrix. In this paper a novel algorithm is developed for biclustering gene expression data using the newly introduced concept of MSR difference threshold. In the first step high quality bicluster seeds are generated using K-Means clustering algorithm. Then more genes and conditions (node) are added to the bicluster. Before adding a node the MSR X of the bicluster is calculated. After adding the node again the MSR Y is calculated. The added node is deleted if Y minus X is greater than MSR difference threshold or if Y is greater than MSR threshold which depends on the dataset. The MSR difference threshold is different for gene list and condition list and it depends on the dataset also. Proper values should be identified through experimentation in order to obtain biclusters of high quality. The results obtained on bench mark dataset clearly indicate that this algorithm is better than many of the existing biclustering algorithms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.