998 resultados para Asurbanipal, Rey de Asiria, 668-627 a.C.
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
The aim of this study was to examine the incidence and factors associated with the severity of liver fibrosis in 234 coinfected patients in Brazil. Patients were cared for in our clinic, from 1996 to 2004. Eligible patients were defined as patients with documented HIV and hepatitis C virus (HCV) infections and had previously undergone a liver biopsy. Patients with persistently normal alanine aminotransferase (ALT) were also included. The variables selected for study were age, gender, risk category, history of high alcohol consumption, CD4(+) T cell count, antiretroviral therapy usage, HCV genotype and duration of HCV infection. Stage of fibrosis was scored as follows: F0, no fibrosis; F1, portal fibrosis with no septa; F2, portal fibrosis with few septa; F3, bridging fibrosis with many septa; and F4, cirrhosis. The liver fibrosis stage was F3 in 39 (16.6%) and F4 in 20(8.5%) patients. Among patients with normal ALT, the liver fibrosis stage was F3-F4 in three patients (5.6%). Predictors of severe liver fibrosis (17344) by multivariate analysis were age (older patients) and genotype 3 (genotype I odds ratio [OR], 0.28; 95% confidence interval [0], 0.12 0.65). In summary, in the present study severe liver fibrosis was found in 25% of our patients and was associated with an age of more than 38 years at the time of liver biopsy as well as, HCV genotype 3. No differences were found with respect to CD4(+) T cell counts although patients with a CD4(+) T cell count greater than 50 were excluded.
Resumo:
Background: Leishmania braziliensis is the main causative agent of cutaneous leishmaniasis in Brazil. Protection against infection is related to development of Th1 responses, but the mechanisms that mediate susceptibility are still poorly understood. Murine models have been the most important tools in understanding the immunopathogenesis of L. major infection and have shown that Th2 responses favor parasite survival. In contrast, L. braziliensis-infected mice develop strong Th1 responses and easily resolve the infection, thus making the study of factors affecting susceptibility to this parasite difficult. Methodology/Principal Findings: Here, we describe an experimental model for the evaluation of the mechanisms mediating susceptibility to L. braziliensis infection. BALB/c mice were inoculated with stationary phase promastigotes of L. braziliensis, isolates LTCP393(R) and LTCP15171(S), which are resistant and susceptible to antimony and nitric oxide (NO), respectively. Mice inoculated with LTCP393(R) presented larger lesions that healed more slowly and contained higher parasite loads than lesions caused by LTCP15171(S). Inflammatory infiltrates in the lesions and production of IFN-gamma, TNF-alpha, IL-10 and TGF-beta were similar in mice inoculated with either isolate, indicating that these factors did not contribute to the different disease manifestations observed. In contrast, IL-4 production was strongly increased in LTCP393(R)-inoculated animals and also arginase I (Arg I) expression. Moreover, anti-IL-4 monoclonal antibody (mAb) treatment resulted in decreased lesion thickness and parasite burden in animals inoculated with LTCP393(R), but not in those inoculated with LTCP15171(S). Conclusion/Significance: We conclude that the ability of L. braziliensis isolates to induce Th2 responses affects the susceptibility to infection with these isolates and contributes to the increased virulence and severity of disease associated with them. Since these data reflect what happens in human infection, this model could be useful to study the pathogenesis of the L. braziliensis infection, as well as to design new strategies of therapeutic intervention.
Resumo:
The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.
Resumo:
The cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.
Resumo:
Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous multifunctional enzymes that are involved in the cellular detoxification of a large number of endogenous and exogenous chemical agents that have electrophilic functional groups. People who have deficiencies in this family of genes are at increased risk of developing some types of tumors. We examined GSTP1 Ile105Val polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the Val allele of the GSTP1 Ile105Val polymorphism had an increased risk of tumor development (odds ratio = 8.60; 95% confidence interval = 4.74-17.87; P < 0.001). Overall survival of patients did not differ significantly. We suggest that GSTP1 Ile105Val polymorphisms are involved in susceptibility to developing astrocytomas and glioblastomas.
Resumo:
Disruption or loss of tumor suppressor gene TP53 is implicated in the development or progression of almost all different types of human malignancies. Other members of the p53 family have been identified. One member, p73, not only shares a high degree of similarity with p53 in its primary sequence, but also has similar functions. Like p53, p73 can bind to DNA and activate transcription. Using PCR-SSCP and gene sequencing, we analyzed the TP53 and TP73 genes in a case of a grade III anaplastic astrocytoma that progressed to glioblastoma. We found a deletion of AAG at position 595-597 of TP53 (exon 6), resulting in the deletion of Glu 199 in the protein and a genomic polymorphism of TP73, identified as an A-to-G change, at position E8/+15 at intron 8 (IVS8-15A>G). The mutation found at exon 6 of the gene TP53 could be associated with the rapid tumoral progression found in this case, since the mutated p53 may inactivate the wild-type p53 and the p73 alpha protein, which was conserved here, leading to an increase in cellular instability.
Resumo:
The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.
Resumo:
Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility and deformity, recurrent fractures, blue sclera, short stature, and dentinogenesis imperfecta. Most cases are caused by mutations in COL1A1 and COL1A2 genes. We present a novel splicing mutation in the COL1A1 gene (c. 1875+ 1G>C) in a 16-year-old Brazilian boy diagnosed as a type III osteogenesis imperfecta patient. This splicing mutation and its association with clinical phenotypes will be submitted to the reference database of COL1A1 mutations, which has no other description of this mutation.
Resumo:
The aim of the present work was to analyze c-fos response within the trigeminal nucleus caudalis (TNC) of pinealectomized rats and animals that received intraperitoneal melatonin, after intracisternal infusion of capsaicin, used to induce intracranial trigeminovascular stimulation. Experimental groups consisted of animals that received vehicle solution (saline-ethanol-Tween 80, 8:1:1, diluted 1:50) only (VEI, n = 5); animals that received capsaicin solution (200 nM) only (CAP, n = 6); animals submitted to pinealectomy (PX, n = 5); sham-operated animals (SH, n = 5); animals submitted to pinealectomy followed by capsaicin stimulation (200 nM) after 15 days (PX + CAP, n = 7); and animals that received capsaicin solution (200 nM) and intraperitoneal melatonin (10 mg/kg) (CAP + MEL, n = 5). Control rats, receiving vehicle in the cisterna magna, showed a small number of c-fos-positive cells in the TNC (layer I/II) as well as the sham-operated and pinealectomized rats, when compared to animals stimulated by capsaicin. On the other hand, pinealectomized rats, which received capsaicin, presented the highest number of c-fos-positive cells. Animals receiving capsaicin and melatonin treatment had similar expression of the vehicle group. Our data provide experimental evidence to support the role of melatonin and pineal gland in the pathophysiology of neurovascular headaches.
Resumo:
Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1% of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today, needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors that control viral transmission in order to develop more efficient control measures. However, despite the health costs associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in Sao Paulo state, Brazil. We show that different viral genotypes entered Sao Paulo at different times, grew at different rates, and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV in Sao Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should influence future intervention policies.
Resumo:
Background: Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods: Glutathione S-transferase (GST) and GST-fusion proteins representing the N-terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results: The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay ( ELISA), showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea ( PNG), and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions: This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.
Resumo:
Elastic scattering angular distributions for (7)Be, (9)Be, and (10)Be isotopes on (12)C target were measured at laboratory energies of 18.8, 26.0, and 23.2 MeV, respectively. The analysis was performed in terms of optical model potentials using Woods-Saxon and double-folding form factors. Also, continuum discretized coupled-channels calculations were performed for (7)Be and (9)Be + (12)C systems to infer the role of breakup in the elastic scattering. For the (10)Be + (12)C system, bound states coupled-channels calculations were considered. Moreover, total reaction cross sections were deduced from the elastic scattering analysis and compared with published data on other weakly and tightly bound projectiles elastically scattered on the (12)C target, as a function of energy.
Resumo:
The elastic-scattering angular distribution for (8)Li on (12)C has been measured at E(LAB) = 23.9 MeV with (8)Li radioactive nuclear beam produced by the Radioactive Ion Beams in Brazil facility. This angular distribution was analyzed in terms of optical-model with Woods-Saxon and double-folding Sao Paulo potential. The roles of the breakup and inelastic channels were also investigated with cluster folding and deformed potentials, respectively, through coupled-channels calculations. The angular distribution for the proton-transfer (12)C((8)Li, (9)Be)(11)B reaction was also measured at the same energy. The spectroscopic factor for the <(9)Be|(8)Li + p > bound system was obtained and compared with shell-model calculations and with other experimental values. Total reaction cross sections for the present system were also extracted from the elastic-scattering analysis. A systematic of the reduced reaction cross sections obtained from the present and published data on (6,7,8)Li isotopes on (12)C was performed as a function of energy.