991 resultados para Astrophysics and Astronomy
Resumo:
Metrology of XUV beams (X-ray lasers, high-harmonic generation and VUV free-electron lasers) is of crucial importance for the development of applications. We have thus developed several new optical systems enabling us to measure the optical properties of XUV beams. By use of a Michelson interferometer working as a Fourier-transform spectrometer, the line shapes of different X-ray lasers have been measured with a very high accuracy (Deltalambda/lambdasimilar to10(-6)). Achievement of the first XUV wavefront sensor has enabled us to measure the beam quality of laser-pumped as well as discharge-pumped X-ray lasers. A capillary discharge X-ray laser has demonstrated a very good wavefront allowing us to achieve an intensity as high as 3x10(14) W cm(-2) by focusing with a f=5 cm mirror. The sensor accuracy has been measured using a calibrated spherical wave generated by diffraction. The accuracy has been estimated to be as good as lambda/120 at 13 nm. Commercial developments are underway. At Laboratoire d'Optique Appliquee, we are setting up a new beamline based on high-harmonic generation in order to start the femtosecond, coherent XUV optic .
Resumo:
We report a new version of the UMIST database for astrochemistry. The previous (1995) version has been updated and its format has been revised. The database contains the rate coefficients, temperature ranges and - where available - the temperature dependence of 4113 gas-phase reactions important in astrophysical environments. The data involve 396 species and 12 elements. We have also tabulated permanent electric dipole moments of the neutral species and heats of formation. A new table lists the photo process cross sections (ionisation, dissociation, fragmentation) for a few species for which these quantities have been measured. Data for Deuterium fractionation are given in a separate table. Finally, a new online Java applet for data extraction has been created and its use is explained in detail. The detailed new datafiles and associated software are available on the World Wide Web at http://www.rate99.co.uk.
Resumo:
We propose an immediately realizable scheme showing signatures of multipartite entanglement generated by radiation pressure in a cavity system with a movable mirror. We show how the entanglement involving the inaccessible massive object is unraveled by means of field-field quantum correlations and persists within a wide range of working conditions. Our proposal provides an operative way to infer the quantum behavior of a system that is only partially accessible.
Resumo:
Anionic and cationic alkyl-chain effects on the self-aggregation of both neat and aqueous solutions of 1-alkyl-3-methylimidazolium alkylsulfonate salts ([C(n)H(2n+ 1)mim][CmH2m+1SO3]; n = 8, 10 or 12; m = 1 and n = 4 or 8; m = 4 or 8) have been investigated. Some of these salts constitute a novel family of pure catanionic surfactants in aqueous solution. Examples of this class of materials are rare; they are distinct from both mixed cationic-anionic surfactants (obtained by mixing two salts) and gemini surfactants (with two or more amphiphilic groups bound by a covalent linker). Fluorescence spectroscopy and interfacial tension measurements have been used to determine critical micelle concentrations (CMCs), surface activity, and to compare the effects of the alkyl-substitution patterns in both the cation and anion on the surfactant properties of these salts. With relatively small methylsulfonate anions (n = 8, 10 and 12, m = 1), the salts behave as conventional single chain cationic surfactants, showing a decrease of the CMC upon increase of the alkyl chain length (n) in the cation. When the amphiphilic character is present in both the cation and anion (n = 4 and 8, m = 4 and 8), novel catanionic surfactants with CMC values lower than those of the corresponding cationic analogues, and which exhibited an unanticipated enhanced reduction of surface tension, were obtained. In addition, the thermotropic phase behaviour of [C(8)H(18)mim][C8H18SO3] (n = m = 8) was investigated using variable temperature X-ray scattering, polarising optical microscopy and differential scanning calorimetry; formation of a smectic liquid crystalline phase with a broad temperature range was observed.
Resumo:
An intuitive and accurate picture of the occurrence of optomechanical entanglement in a system of great current experimental interest is provided. At the optimal working point for entanglement generation, the interaction of a light field with a micromechanical oscillator is described in terms of simple SU( 2) transformations. This allows the analysis of a recent proposal for the revelation of quantumness in the state of a massive mirror from a clear and experimentally biased viewpoint.
Resumo:
We propose a protocol for perfect quantum state transfer that is resilient to a broad class of realistic experimental imperfections, including noise sources that could be modeled either as independent Markovian baths or as certain forms of spatially correlated environments. We highlight interesting connections between the fidelity of state transfer and quantum stochastic resonance effects. The scheme is flexible enough to act as an effective entangling gate for the generation of genuine multipartite entanglement in a control-limited setting. Possible experimental implementations using superconducting qubits are also briefly discussed.
Resumo:
The speedup provided by quantum algorithms with respect to their classical counterparts is at the origin of scientific interest in quantum computation. However, the fundamental reasons for such a speedup are not yet completely understood and deserve further attention. In this context, the classical simulation of quantum algorithms is a useful tool that can help us in gaining insight. Starting from the study of general conditions for classical simulation, we highlight several important differences between two nonequivalent classes of quantum algorithms. We investigate their performance under realistic conditions by quantitatively studying their resilience with respect to static noise. This latter refers to errors affecting the initial preparation of the register used to run an algorithm. We also compare the evolution of the entanglement involved in the different computational processes.
Resumo:
We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.