945 resultados para Astronautics and civilization
Resumo:
Mode of access: Internet.
Resumo:
"Appendix. Brief remarks on the Malagasy language": p. 411-426.
Resumo:
In an atmosphere where civilization is progressing and becoming more aware of the consequences of careless development decisions, rethinking sustainable development - particularly sustainable urban and infrastructure development - has become an inevitable necessity. ------ ----- Rethinking Sustainable Development: Urban Management, Engineering, and Design considers the role of urban, regional and infrastructure planning in achieving sustainable urban and infrastructure development, providing insights into overcoming the consequences of unsustainable development. This companion volume to Sustainable Urban and Regional Infrastructure: Technology, Planning and Management, overviews all aspects of sustainable urban and infrastructure development.
Resumo:
The emergence of strong sovereign states after the Treaty of Westphalia turned two of the most cosmopolitan professions (law and arms) into two of the least cosmopolitan. Sovereign states determined the content of the law within their borders – including which, if any, ecclesiastical law was to be applied; what form of economic regulation was adopted; and what, if any, international law applied. Similarly, states sought to ensure that all military force was at their disposal in national armies. The erosion of sovereignty in a post-Westphalian world may significantly reverse these processes. The erosion of sovereignty is likely to have profound consequences for the legal profession and the ethics of how, and for what ends, it is practised. Lawyers have played a major role in the civilization of sovereign states through the articulation and institutionalisation of key governance values – starting with the rule of law. An increasingly global profession must take on similar tasks. The same could be said of the military. This essay will review the concept of an international rule of law and its relationship to domestic conceptions and outline the task of building the international rule of law and the role that lawyers can and should play in it.
Resumo:
The emergence of strong sovereign states after the Treaty of Westphalia turned two of the most cosmopolitan professions (law and arms) into two of the least cosmopolitan. Sovereign states determined the content of the law within their borders – including which, if any, ecclesiastical law was to be applied; what form of economic regulation was adopted; and what, if any, international law applied. Similarly, states sought to ensure that all military force was at their disposal in national armies. The erosion of sovereignty in a post-Westphalian world may significantly reverse these processes. The erosion of sovereignty is likely to have profound consequences for the legal profession and the ethics of how, and for what ends, it is practised. Lawyers have played a major role in the civilization of sovereign states through the articulation and institutionalisation of key governance values – starting with the rule of law. An increasingly global profession must take on similar tasks. The same could be said of the military. This essay will review the concept of an international rule of law and its relationship to domestic conceptions and outline the task of building the international rule of law and the role that lawyers can and should play in it.
Resumo:
“There it went!—Our last little bit of capital, our going back to civilization money . . .” So Charmian Clift fretted when she watched her husband George Johnson hand over a large number of drachma notes to buy a house on the Greek Island of Hydra in 1956. Whereas today’s expatriates fly back and forth between home and away with ease, Clift’s commitment to Hydra meant that a return to Australia, “to civilization”, would always be difficult and perhaps impossible...
Resumo:
A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sizedtrucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
The design activities of the development of the SCRAMSPACE I scramjet-powered free-flight experiment are described in this paper. The objectives of this flight are first described together with the definition of the primary, secondary and tertiary experiments. The Scramjet configuration studied is first discussed together with the rocket motor system selected for this flight. The different flight sequences are then explained, highlighting the SCRAMSPACE I free-flyer separation and re-orientation procedures. A design trade-off study is then described considering vehicle stability, packaging, thermo-structural analysis and trajectory, discussing the alignment of the predicted performance with the mission scientific requirements. The global system architecture and instrumentation of the vehicle are then explained. The conclusions of this design phase are that a vehicle design has been produced which is able to meet the mission scientific goals and the procurement & construction of the vehicle are ongoing.
Resumo:
Radiative and total heat transfer at the flow stagnation point of a 1:40.8 binary scaled model of the Titan Explorer vehicle were measured in the X3 expansion tube. Results from the current study illustrated that with the addition of CH4 into a N2 test gas radiative heat transfer could be detected. For a test gas of 5% CH4 and 95% N2, simulating an atmospheric model for Titanic aerocapture, approximately 4% of the experimentally measured total stagnation point heat transfer was found to be due to radiation. This was in comparison to < 1% measured for a test gas of pure nitrogen. When scaled to the flight vehicle, experimental results indicate a 64% contribution of radiation (test gas 5% CH4/95% N2). Previous numerical results however have predicted this contribution to be between 80-92%. Thus, experimental results from the current study suggest that numerical analyses are over-predicting the radiative heat transfer on the flight vehicle.
Resumo:
Aground-based tracking camera and coaligned slitless spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth’s atmosphere in June 2010. Good quality spectra were obtained, which showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the blackbody nature of the radiation concluded that the peak average temperature of the surface was about (3100± 100)K. Line spectra from oxygen and nitrogen atoms were used to infer a peak average shock-heated gas temperature of around((7000±400))K.
Resumo:
As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.