950 resultados para Assimilation <Soz>


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The C-13 turnover rates of the liver and thoracic pectoral muscle of growing broilers were determined by feeding diets with varying C-13 content.2. Male chicks ( 1- d- old) were subjected to treatments based on free choice of 5 different mixes of energy and protein sources from plants with C-3 and C-4 photosynthetic pathways that had differing C-13 content. Rice bran ( R) and soybean meal ( S) were the C-3 sources, while maize ( C) and maize gluten meal ( G) were the C-4 sources. Choices were R + S, C + G, R + G, C + S or R + C +G + S. The 6th treatment was a complete feed ( CF) that was similar to a commercial broiler feed.3. The isotopic composition of the birds' tissues was representative of the isotopic composition of the diets. The assimilation was faster for C-3, in both liver and muscle, than for C-4 diets, and give the delta per mil difference between the diet and tissues.4. The liver is the most active metabolic tissue and gave more rapid isotope turnover than in muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los documentos del Seminario fueron publicados por UNESCO en 1961 con el título: La urbanización en América Latina/Urbanization in Latin America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady-state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large-scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assimilation of satellite estimated precipitation data can be used as an efficient tool to improve the analysis of rainfall generated by numerical models of weather forecast. The system of data assimilation used in this study is cumulus parameterization inversion based on the Kuo scheme. Reanalysis were performed using the field experiment data of the LBA Project (WETAMC and DRYtoWET-AMC), where it was possible to verify an improvement in the simulations results, since the data assimilation corrects the position and the intensity of rainfall in the numerical model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A faithful depiction of the tropical atmosphere requires three-dimensional sets of observations. Despite the increasing amount of observations presently available, these will hardly ever encompass the entire atmosphere and, in addition, observations have errors. Additional (background) information will always be required to complete the picture. Valuable added information comes from the physical laws governing the flow, usually mediated via a numerical weather prediction (NWP) model. These models are, however, never going to be error-free, why a reliable estimate of their errors poses a real challenge since the whole truth will never be within our grasp. The present thesis addresses the question of improving the analysis procedures for NWP in the tropics. Improvements are sought by addressing the following issues: - the efficiency of the internal model adjustment, - the potential of the reliable background-error information, as compared to observations, - the impact of a new, space-borne line-of-sight wind measurements, and - the usefulness of multivariate relationships for data assimilation in the tropics. Most NWP assimilation schemes are effectively univariate near the equator. In this thesis, a multivariate formulation of the variational data assimilation in the tropics has been developed. The proposed background-error model supports the mass-wind coupling based on convectively-coupled equatorial waves. The resulting assimilation model produces balanced analysis increments and hereby increases the efficiency of all types of observations. Idealized adjustment and multivariate analysis experiments highlight the importance of direct wind measurements in the tropics. In particular, the presented results confirm the superiority of wind observations compared to mass data, in spite of the exact multivariate relationships available from the background information. The internal model adjustment is also more efficient for wind observations than for mass data. In accordance with these findings, new satellite wind observations are expected to contribute towards the improvement of NWP and climate modeling in the tropics. Although incomplete, the new wind-field information has the potential to reduce uncertainties in the tropical dynamical fields, if used together with the existing satellite mass-field measurements. The results obtained by applying the new background-error representation to the tropical short-range forecast errors of a state-of-art NWP model suggest that achieving useful tropical multivariate relationships may be feasible within an operational NWP environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work studies a km-scale data assimilation scheme based on a LETKF developed for the COSMO model. The aim is to evaluate the impact of the assimilation of two different types of data: temperature, humidity, pressure and wind data from conventional networks (SYNOP, TEMP, AIREP reports) and 3d reflectivity from radar volume. A 3-hourly continuous assimilation cycle has been implemented over an Italian domain, based on a 20 member ensemble, with boundary conditions provided from ECMWF ENS. Three different experiments have been run for evaluating the performance of the assimilation on one week in October 2014 during which Genova flood and Parma flood took place: a control run of the data assimilation cycle with assimilation of data from conventional networks only, a second run in which the SPPT scheme is activated into the COSMO model, a third run in which also reflectivity volumes from meteorological radar are assimilated. Objective evaluation of the experiments has been carried out both on case studies and on the entire week: check of the analysis increments, computing the Desroziers statistics for SYNOP, TEMP, AIREP and RADAR, over the Italian domain, verification of the analyses against data not assimilated (temperature at the lowest model level objectively verified against SYNOP data), and objective verification of the deterministic forecasts initialised with the KENDA analyses for each of the three experiments.