911 resultados para Artillery drill and tactics.
Resumo:
The influence of soil drill rod length on the N value in the SPT-T test has been studied extensively by Mello (1971), Schmertmann & Palacios (1979), Odebrecht et al. (2002) and Cavalcante (2002). This paper presents an analysis of the Standard Penetration Test supplemented with torque measurement (SPT-T). A theoretical study of the resistance of the rod material to torsion and bending indicated that the shear stress caused by the rod self-weight represents less than 1% of that caused by the torsional moment. An experimental study with electric torquemeters attached to a horizontal rod system, as well as two field tests in the vertical direction, were also carried out to compare and substantiate the results. The purpose of these tests was to analyze changes along the length of the rod in response to successive increments at 1-meter intervals. Torque measurements were taken at each increment of the length to ascertain the accuracy of the theoretical data. The difference between the applied torque and the measured torque at the end of rod system was lower than the minimum scale of mechanical torquemeters used in practice.
Resumo:
Purpose:The aim of this study was to evaluate deformation, roughness, and mass loss of stainless steel, diamond-like carbon (DLC)-coated and zirconia drills after multiple osteotomies with sterilization procedures.Materials and Methods:Drilling procedures were performed using stainless steel (G1), DLC-coated (G2), and zirconia (G3) drills. All groups were divided in subgroups 1, 2, 3, 4, and 5, corresponded to drills used 0, 10, 20, 30, and 40 times, respectively.Results:No significant differences in mass and roughness were detected among all groups and subgroups. In SEM images, all groups revealed signs of wear while coating delamination was detected in G2. Drills from G1 displayed more irregular surface, whereas cutting edges were more regular in G3.Conclusion:Zirconia drills presented more regular surfaces whereas stainless steel drills revealed more severe signs of wear. Further studies must be performed to evaluate the putative influence of these findings in heat generation.
Resumo:
Purpose: This study evaluated and compared bone heating, drill deformation, and drill roughness after several implant osteotomies in the guided surgery technique and the classic drilling procedure. Materials and Methods: The tibias of 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG); subgroups were then designated (G0, G1, G2, G3, and G4, corresponding to drills used 0, 10, 20, 30 and 40 times, respectively). Each animal received 10 sequential osteotomies (5 in each tibia) with each technique. Thermal changes were quantified, drill roughness was measured, and the drills were subjected to scanning electron microscopy. Results: Bone temperature generated by drilling was significantly higher in the GG than in the CG. Drill deformation in the GG and CG increased with drill use, and in the CG a significant difference between GO and groups G3 and G4 was observed. In the GG, a significant difference between GO and all other groups was found. For GG versus CG, a significant difference was found in the 40th osteotomy. Drill roughness in both groups was progressive in accordance with increased use, but there was no statistically significant difference between subgroups or between GG and CG overall. Conclusion: During preparation of implant osteotomies, the guided surgery technique generated a higher bone temperature and deformed drills more than the classic drilling procedure. The increase in tissue temperature was directly proportional to the number of times drills were used, but neither technique generated critical necrosis-inducing temperatures. Drill deformation was directly proportional to the number of times the drills were used. The roughness of the drills was directly proportional to the number of reuses in both groups but tended to be higher in the GG group.
Resumo:
This study aimed to evaluate the effect of Er:YAG (L) and diamond drills (DD) on: 1) the microshear bond strength (MPa); 2) the adhesive interface of two-step (TS) – Adper Scotchbond Multipurpose and one-step (OS) adhesives – Adper EasyOne, both from 3M ESPE. Material and methods: According to the preparation condition and adhesives, the samples were divided into four groups: DD_TS (control); DD_OS; L_TS and L_OS. 60 bovine incisors were randomly divided into experimental and groups: 40 for microshear bond strength (n = 10) and 20 for the adhesive interface morphology [6 to measure the thickness of the hybrid layer (HL) and length of tags (t) by CLSM (n = 3); 12 to the adhesive interface morphology by SEM (n = 3) and 2 to illustrate the effect of the instruments on dentine by SEM (n = 1)]. To conduct the microshear bond strength test, four cylinders (0.7 mm in diameter and 1 mm in height with area of adhesion of 0.38 mm) were constructed with resin composite (Filtek Z350 XT – 3M ESPE) on each dentin surface treated by either L or DD and after adhesives application. Microshear bond strength was performed in universal testing machine (EMIC 2000) with load cell of 500 kgf and a crosshead speed of 0.5 mm / min. Adhesive interface was characterized by thickness of hybrid layer (HL) and length of tags (t) in nm, with the aid of UTHSCSA ImageTool software. Results: Microshear bond strength values were: L_TS 34.10 ± 19.07, DD_TS 24.26 ± 9.35, L_OS 33.18 ± 12.46, DD_OS 21.24 ± 13.96. Two-way ANOVA resulted in statistically significant differences only for instruments (p = 0.047). Mann-Whitney identified the instruments which determined significant differences for HL thickness and tag length (t). Concerning to the adhesive types, these differences were only observed for (t). Conclusion: It can be concluded that 1) laser Er:YAG results in higher microshear bond strength values regardless of the adhesive system (TS and OS); 2) the tags did not significant affect the microshear bond strength; 3) the adhesive interface was affected by both the instruments for cavity preparation and the type of adhesive system used.
Resumo:
Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn
Resumo:
According to life-history theory age-dependent investments into reproduction are thought to co-vary with survival and growth of animals. In polygynous species, in which size is an important determinant of reproductive success, male reproduction via alternative mating tactics at young age are consequently expected to be the less frequent in species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a highly sexually dimorphic mountain ungulate whose males have been reported to exhibit extremely high adult survival rates. Using data from two offspring cohorts in a population in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of paternity were inferred within a Bayesian framework. In accordance with our hypothesis, reproductive success in male Alpine ibex was heavily biased towards older, dominant males that monopolized access to receptive females by adopting the 'tending' tactic, while success among young, subordinate males via the sneaking tactic 'coursing' was in general low and rare. In addition, we detected a high reproductive skew in male Alpine ibex, suggesting a large opportunity for selection. Compared with other ungulates with higher mortality rates, reproduction among young male Alpine ibex was much lower and more sporadic. Consistent with that, further examinations on the species level indicated that in polygynous ungulates the significance of early reproduction appears to decrease with increasing survival. Overall, this study supports the theory that survival prospects of males modulate the investments into reproduction via alternative mating tactics early in life. In the case of male Alpine ibex, the results indicate that their life-history strategy targets for long life, slow and prolonged growth and late reproduction.