948 resultados para Arsenic remediation
Resumo:
About 100 million rural people in Asia are exposed to arsenic (As)-polluted drinking water and agricultural products. Total and inorganic arsenic (t-As and i-As) intake mainly depend on the quality of drinking and cooking waters, and amounts of seafood and rice consumed. The main problems occur in countries with poor water quality where the population depends on rice for their diet, and their t-As and i-As intake is high as a result of growing and cooking rice in contaminated water. Workable solutions to remove As from water and breeding rice cultivars with low As accumulation are being sought. In the meantime, simple recommendations for processing and cooking foods will help to reduce As intake. For instance, cooking using high volumes of As-free water may be a cheap way of reducing As exposure in rural populations. It is necessary to consider the effects of cooking and processing on t-As and i-As to obtain a realistic view of the risks associated with intake of As in Asendemic areas.
Resumo:
This report describes a novel technology for arsenic removal from groundwater. The work was carried out in India in collaboratio with three Indian and three European partners. European partners include Leiden University of the Netherlands and Stuttgart University of Germany. The work was funded by The World Bank.
Resumo:
Arsenic and its compounds are toxic pollutants for the environment and all living organisms. At present, there is considerable interest in studying new sorbent materials for the removal of arsenic from aqueous solutions. This work discusses the feasibility of arsenic uptake onto dolomite which is considered to be a potential inexpensive adsorbent. Thermodynamic and kinetic experiments were undertaken to assess the capacity and rate of As uptake onto dolomite. Experimental data were mathematically described using adsorption kinetic models, namely pseudo-first-order and pseudo-second-order models. The arsenic removal was found to be dependent on the dosage of dolomite, adsorbent particle size and the presence of various anions. Thermodynamic results indicate that the adsorption follows an exothermic chemisorption process. The experimental data indicate successful removal of As(V) ion from aqueous solution indicating that dolomite be used as an inexpensive treatment process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This is a major review work on ground water remediation since the earlier work of Mulligan et al published in 2001 in Engineering Geology Journal. This work resulted from the joint research project of QUB and University of Malaya on iron removal from groundwater for public water supply.
Resumo:
This work reviews the use of micron sized bubbles made from aqueous surfactant solution in environmental remediation. This is a novel technique and offers a low cost treatment option.