896 resultados para Arsenic mobility
Resumo:
CMOS nanocrystalline silicon thin film transistors with high field effect mobility are reported. The transistors were directly deposited by radio-frequency plasma enhanced chemical vapor deposition at 150°C The transistors show maximum field effect mobility of 450 cm2/V-s for electrons and 100 cm2/V-s for holes at room temperature. We attribute the high mobilities to a reduction of the oxygen content, which acts as an accidental donor. Indeed, secondary ion mass spectrometry measurements show that the impurity concentration in the nanocrystalline Si layer is comparable to, or lower than, the defect density in the material, which is already low thanks to hydrogen passivation.
Resumo:
In the above entitled paper (ibid., vol. 55, no. 11, pp. 3001-3011), two errors were noticed after the paper went to press. The errors are corrected here.
Resumo:
Arsenic pollution is a major threat in eastern India and Bangladesh. In Kolkata, sewage-fed fishery is a very popular culture. Wastewater of Kolkata city is diluted with freshwater and used in sewage-fed fish ponds. In the present study the arsenic concentration in the surface wastewater from forty-four different places of southern, eastern, western and norther parts of Kolkata was estimated. In fifteen places, the arsenic level was higher than the allowed limit (0.20 mg/l). But the arsenic level in the waters, sediment of fish culture ponds and in fish flesh of sewage-fed fisheries of Kolkata was below the maximum limit. So, till date there is no threat from arsenic pollution to the sewage-fed fisheries of Kolkata.
Resumo:
We report high hole and electron mobilities in nanocrystalline silicon (nc-Si:H) top-gate staggered thin-film transistors (TFTs) fabricated by direct plasma-enhanced chemical vapor deposition (PECVD) at 260°C. The n-channel nc-Si:H TFT with n+ nc-Si:H ohmic contacts shows a field-effect electron mobility (μnFE) of 130 cm2/Vs, which increases to 150 cm2/Vs with Cr-silicide contacts, along with a field-effect hole mobility (μhFE) of 25 cm2/Vs. To the best of our knowledge, the hole and electron mobilities reported here are the highest achieved to date using direct PECVD. © 2005 IEEE.
Resumo:
A detailed study of the fortification of normal creosote and low temperature creosote with As sub(2) O sub(3) at 40°C, 50°C, 60°C, 70°C, 80°C and 90°C was carried out. When compared to normal creosote, low temperature creosote has been found to combine more easily with As sub(2) O sub(3) when temperature was . raised from 40 to 90°C. The incorporated arsenic values obtained shows that low temperature creosote with high phenolic content, retains considerably more As sub(2) O sub(3) and a maximum of 0.2180% w/w can be incorporated in low temperature creosote at 90°C.