849 resultados para Apoptotic mechanism
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Malaria is an infectious disease of humans and other animals including birds, reptiles and most mammals. It is transmitted via the inoculation of Plasmodium sporozoites into the skin through the bite of an infected female Anopheles mosquito. Although every year, around 700.000 lives are perished, mainly children under the age of 3-5 years old, to Plasmodium infection this deadly parasite has a relatively low efficiency of transmission from mosquitoes into humans.(...)
Resumo:
The centrosome is the major organizing center in a cell, composed by two centrioles, one mother and one daughter, and surrounded by a pericentriolar material, which nucleates microtubules. Centriole duplication and segregation is tightly coupled to cell cycle, which guarantees that centriole number is maintained over generations. During the somatic cell cycle, a pair of centrioles duplicates, after which each daughter cell receives a pair, forming a closed cycle. However, during fertilization, if both cells were to contribute with their pair of centrioles, gamete fusion would result in the double of the normal centriole number.(...)
Resumo:
This paper reports on the experience of the implementation of a new mechanism to assess individual student contribution within project work, where students work in teams to solve a large-scale open-ended interdisciplinary project. The study takes place at the University of Minho, with first year engineering students, enrolled in the Industrial Management and Engineering (Integrated Masters) degree. The aim of this paper is to describe the main principles and procedures underlying the assessment mechanism created and also provide some feedback from its first implementation, based on the students, lecturers and tutors perceptions. For data collection, a survey was sent to all course lecturers and tutors involved in the assessment process. Students also contributed with suggestions, both on a workshop held at the end of the project and also by answering a survey on the overall satisfaction with PBL experience. Findings show a positive level of acceptance of the new mechanism by the students and also by the lecturers and tutors. The study identified the need to clarify the criteria used by the lecturers and the exact role of the tutor, as well as the need for further improvement of its features and procedures. Some recommendations are also issued regarding technical aspects related to some of the steps of the procedures, as well as the need for greater support on the adjustment and final setting of the individual grades.
Resumo:
Dissertação de mestrado integrado em Psicologia
Mechanism of extracellular silver nanoparticles synthesis by Stereum hirsutum and Fusarium oxysporum
Resumo:
The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.
Resumo:
The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.
Resumo:
"Manuscript"
Resumo:
Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC.
Resumo:
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
OBJECTIVE: Parasympathetic dysfunction is an independent risk factor in individuals with coronary artery disease, and cholinergic stimulation is a potential therapeutical option. We determined the effects of pyridostigmine bromide, a reversible anticholinesterase agent, on electrocardiographic variables of healthy individuals. METHODS: We carried out a cross-sectional, double blind, randomized, placebo-controlled study. We obtained electrocardiographic tracings in 12 simultaneous leads of 10 healthy young individuals at rest before and after oral administration of 45 mg of pyridostigmine or placebo. RESULTS: Pyridostigmine increased RR intervals (before: 886±27 ms vs after: 1054±37 ms) and decreased QTc dispersion (before: 72±9ms vs after: 45±3ms), without changing other electrocardiographic variables (PR segment, QT interval, QTc, and QT dispersion). CONCLUSION: Bradycardia and the reduction in QTc dispersion induced by pyridostigmine may effectively represent a protective mechanism if these results can be reproduced in individuals with cardiovascular diseases.
Resumo:
OBJECTIVE: To evaluate elastic properties of conduit arteries in asymptomatic patients who have severe chronic aortic regurgitation. METHODS: Twelve healthy volunteers aged 30±1 years (control group) and 14 asymptomatic patients with severe aortic regurgitation aged 29±2 years and left ventricular ejection fraction of 0.61±0.02 (radioisotope ventriculography) were studied. High-resolution ultrasonography was performed to measure the systolic and diastolic diameters of the common carotid artery. Simultaneous measurement of blood pressure enabled the calculation of arterial compliance and distensibility. RESULTS: No differences were observed between patients with aortic regurgitation and the control group concerning age, sex, body surface, and mean blood pressure. Pulse pressure was significantly higher in the aortic regurgitation group compared with that in the control group (78±3 versus 48±1mmHg, P<0.01). Arterial compliance and distensibility were significantly greater in the aortic regurgitation group compared with that in the control group (11.0±0.8 versus 8.1±0.7 10-10 N-1 m4, P=0.01 e and 39.3±2.6 versus 31.1±2.0 10-6 N-1 m², P=0.02, respectively). CONCLUSION: Patients with chronic aortic regurgitation have increased arterial distensibility. Greater vascular compliance, to lessen the impact of systolic volume ejected into conduit arteries, represents a compensatory mechanism in left ventricular and arterial system coupling.
Resumo:
OBJECTIVE: To study the mechanism by which poly-L-arginine mediates endothelium-dependent relaxation. METHODS: Vascular segments with and without endothelium were suspended in organ chambers filled with control solution maintained at 37ºC and bubbled with 95% O2 / 5% CO2. Used drugs: indomethacin, acetycholine, EGTA, glybenclamide, ouabain, poly-L-arginine, methylene blue, N G-nitro-L-arginine, and verapamil and N G-monomethyl-L-arginine. Prostaglandin F2á and potassium chloride were used to contract the vascular rings. RESULTS: Poly-L-arginine (10-11 to 10-7 M) induced concentration-dependent relaxation in coronary artery segments with endothelium. The relaxation to poly-L-arginine was attenuated by ouabain, but was unaffected by glybenclamide. L-NOARG and oxyhemoglobin caused attenuation, but did not abolish this relaxation. Also, the relaxations was unaffected by methylene blue, verapamil, or the presence of a calcium-free bathing medium. The endothelium-dependent to poly-L-arginine relaxation was abolished only in vessels contracted with potassium chloride (40 mM) in the presence of L-NOARG and indomethacin. CONCLUSION: These experiments indicate that poly-L-arginine induces relaxation independent of nitric oxide.