969 resultados para Apis mellifera honey
Resumo:
It is already known that the behaviour of the honeybee Apis mellifera is influenced by the Earth's magnetic field. Recently it has been proposed that iron-rich granules found inside the fat body cells of this honeybee had small magnetite crystals that were responsible for this behaviour. In the present work, we studied the iron containing granules from queens of two species of honeybees (A. mellifera and Scaptotrigona postica) by electron microscopy methods in order to clarify this point. The granules were found inside rough endoplasmic reticulum cisternae. Energy dispersive X-ray analysis of granules from A. mellifera showed the presence of iron, phosphorus and calcium. The same analysis performed on the granules of S. postica also indicated the presence of these elements along with the additional element magnesium. The granules of A. mellifera were composed of apoferritin-like particles in the periphery while in the core, clusters of organised particles resembling holoferritin were seen. The larger and more mineralised granules of S. postica presented structures resembling ferritin cores in the periphery, and smaller electron dense particles inside the bulk. Electron spectroscopic images of the granules from A. mellifera showed that iron, oxygen and phosphorus were co-localised in the ferritin-like deposits. These results indicate that the iron-rich granules of these honeybees are formed by accumulation of ferritin and its degraded forms together with elements present inside the rough endoplasmic reticulum, such as phosphorus, calcium and magnesium. It is suggested that the high level of phosphate in the milieu would prevent the crystallisation of iron oxides in these structures, making very unlikely their participation in magnetoreception mechanisms. They are most probably involved in iron homeostasis. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present paper aimed at testing the action of non-lyophilized venom of Africanized bees Apis mellifera through topical applications on Diatraea saccharalis egg masses. The CL50, DL50 and the most susceptible age of eggs to the venom topic application were also determined. Three-day-old eggs were the most susceptible to the venom action with CL50 equal to 8.6 mg/ml and DL50 equal to 0.173 mg/mass. The venom loses its action after being stored for 15 days.
Resumo:
Experiments on the effect of topical application of the synthetic juvenile hormone (JH-III) and of the solvent used to dissolve the hormone on the development of the wax glands of workers of Apis mellifera, were made. The results show that it was impossible to determine the effect of the juvenile hormone (JH) apart from its solvent (acetone), which also alters the developmental pattern of the gland. Most of the experiments reported in scientific literature do not consider the effect of the solvent, analyzing the results by only comparing the treatment with the hormone plus solvent to a control without any treatment. The data presented suggests that this kind of procedure compromises the evaluation of the real JH effect.
Resumo:
Histological analyses were made in order to evaluate the effects of the topic application of a synthetic juvenile hormone (JH-III Sigma) on the development of the venom glands in workers of Apis mellifera. Three experimental groups were used: the first received 1 μl of a dilution of the juvenile hormone in hexane (2μg/μl); the second group received 1 μl of hexane; and the third group, the control, did not receive any kind of treatment. The application was made on larvae at the beginning of the fifth instar and the glands were collected at different developmental stages. The results showed that the application of the diluted hormone, as well as the hexane alone, accelerated gland development in relation to the control group at all developmental stages studied. These data suggest that the juvenile hormone acts on the development of the venom gland; nevertheless, this action could be amplified by the effect of the solvent used in the present work, as well as in other studies concerning this matter.
Resumo:
The present investigation compares the protein electrophoreses profiles of the hypopharyngeal glands of 12 and 25 day old Apis mellifera workers, some of which were experimentally treated with an analogue of juvenile hormone in the moment of the emergence while others were not treated. According to the evaluation of the presented variations by four main bands, it is concluded that the analogue juvenile hormone changes the glandular genetic expression pattern, promoting the disappearance of two from the four main bands in 25 day old workers. The effect of this hormone is discussed as an hypopharyngeal maturation inductor, in synergetic action with the bee age acting early in the glandular cycle.
Resumo:
The present results show that in the ovarioles of a newly emerged (0 day) queen of A. mellifera only two regions may be distinguished: a proximal, short germarium and a very long distal, terminal filament. As the queen matures and gets ready for the nupcial flight, the germarium increases in lenght, advancing towered the distal end, as the terminal filament shortens. The ovarioles of queens ready to mate (6 to 8 days old) have, already one or two ovarian follicles, i.e. a very short proximal vitellarium, but a real vitellogenesis only starts after the fecundation. If the queen does not mate the ovarioles structure is disrupted (12-16 days old). In mated queen eggs the ovarioles present three differentiated regions, from the apice to the basis: a short terminal filament, a medium size germarium, and a very long basal vitellarium. As the eggs are laid, the emptied follicle collapses, degenerates and produces a corpus luteum.
Resumo:
We report nuclear acid phosphatase activity in the somatic (intra-ovariolar and stromatic) and germ cells of differentiating honey bee worker ovaries, as well as in the midgut cells of metamorphosing bees. There was heterogeneity in the intensity and distribution of electron dense deposits of lead phosphate, indicative of acid phosphatase activity in the nuclei of these tissues, during different phases of post-embryonic bee development. This heterogeneity was interpreted as a variation of the nuclear functional state, related to the cell functions in these tissues.
Resumo:
The present work reports the differences between the ovarian grow in queen and worker larvae of A. mellifera, from the start of differential feeding. The observations made of the growth rates in larvae of both castes showed that the queen and worker larvae have the same rates of cephalic capsule growth from one instar to another but the weight gain is greater in queens. In the same way, the draw areas of ovaries of queens increase more and continuously, while from the 5th instar on the ovaries of workers decrease in size. The decrease is due to a loss of ovariole numbers that starts early in the worker larvae and increases in the 4th-5th instar. The ovarian shape in queens and workers became different in the last larval instars.
Resumo:
The acute toxicity of pellitorine, an amide isolated from Piper tuberculatum (Piperaceae) which is studied as a biopesticide in European corner borer, was evaluated on larvae and newly emerged adults of honeybee Apis mellifera by means of contact and ingestion bioassays. Workers in the larval and adult phase were separated in groups, which received pellitorine in different concentrations. The larvae were maintained in their own original cells, receiving feeding and normal care from the nurses. The adults were confined in wooden cages with screens, receiving artificial diet made up of sugar and water (1:1). The concentrations of 40, 200, 1 000, 5 000 and 25 000 ng a.i./individual were obtained diluting pellitorine in 98% ethanol. LD10 values of 39.14, 36.16 and 13.79 ng a.i./insect were determined for larvae, for adults by ingestion and adults by contact, respectively. The honeybee larvae were shown to be highly susceptible to the amide pellitorine.
Resumo:
The aim of the present work was to verify the influence of the juvenile hormone (JH) applied on worker larvae of Apis mellifera 2 to 5 days old over the haemolymph total protein and electrophoretic pattern. Each larvae received topical applications of 1 ml of a solution of JH in hexane (1 μg/ml) on their 2 nd, 3 rd 4 th and 5 th day after hatching and had the amount and electrophoretic pattern of proteins from the haemolymph analyzed during the remaining days of their life. As a control, haemolymph of larvae of the same age that did not receive any kind of treatment was analyzed. The results show that the application of JH on larvae 3 or more days old affect the amount and electrophoretic pattern of the proteins, with this effect lasting through the subsequent days.
Resumo:
The midgut of Apis mellifera is remodeled during metamorphosis. The epithelium and, to a lesser extent, the muscular sheath degenerate between the end of the last larval instar and the onset of pupation (prepupa).The larval epithelium is shed to the midgut lumen and digested, while a new epithelium is reconstructed from larval regenerative cells. During pupation, some reorganization still occurs, mainly in brown-eyed pupae. In pharate adult, the midgut wall shows the characteristics of adult, although some cells have pycnotic nuclei. The localization of alkaline and acid phosphatases showed that these enzymes were not involved in the reabsorption of the midgut wall.