979 resultados para Antigenic typing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HLA system is the most polymorphic genetic system described in humans. It consists of several closely linked loci encoding cell surface glycoproteins whose best known function is activating immune system response through antigenic presentation. New loci and new alleles have been described since the discovery of this genetic system and the presently available DNA typing and sequencing of these new alleles have increased the variety of HLA allelism. Due to the fact that HLA gene frequencies have a large degree of variability and a remarkable geographical correlation, HLA genes are an important and useful tool to infer genetic background and ethnical composition of modern human populations and also for tracing migration of ancient ones. In addition, certain combinations of contiguous alleles due to the strong linkage disequilibrium between HLA neighbouring loci show a characteristic frequency or are distinctive in many present day populations. Thus, HLA genetic system is a unique tool for studying the origin of relatively isolated groups, like Turkmen, Azeri and Kurd people, the populations under study, living in North Iran, in the surrounding area of Caspian Sea. Finally, HLA polymorphism is crucial for the compatibility between donor and receptor in organ transplantation and several HLA alleles have been linked to diseases and to response to drug treatments, which accomplishes relationships of certain variants with different pathologies treatment including AIDS. This is important in personalized treatments design. Turkmen could be descendants of Oghuz tribes from Seljuq branch coming from Transoxiana region (Central Asia) contemporarily to the foundation of the Seljuk Empire in 10th century AD. Conversely, this people could belong to another group within the Oghuz, arriving to Iran five centuries later. Migrations of this people were initially developed peacefully, being vassals of the Safavid Empire, and later by violent raids. They speak a language belonging to the Turkish-Oghuz group. In Iran, Turkmen live in Golestan province, mainly in Türkmensähra (“Turkmen plain”) area and amount 1.5 million people (2% of Iranian population). Most of this people are Sunni Muslims...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus is a major chronic disease that continues to increase significantly. One of the most important and costly complications of diabetes are foot infections that may be colonized by pathogenic and antimicrobial resistant bacteria, harboring several virulence factors, that could impair its successful treatment. Staphylococcus aureus is one of the most prevalent isolate in diabetic foot infections, together with aerobes and anaerobes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global Network for the Molecular Surveillance of Tuberculosis 2010: A. Miranda (Tuberculosis Laboratory of the National Institute of Health, Porto, Portugal)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis populations in countries with persistent bovine tuberculosis usually show a prevalent spoligotype with a wide geographical distribution. This study applied mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing to a random panel of 115 M. bovis isolates that are representative of the most frequent spoligotype in the Iberian Peninsula, SB0121. VNTR typing targeted nine loci: ETR-A (alias VNTR2165), ETR-B (VNTR2461), ETR-D (MIRU4, VNTR580), ETR-E (MIRU31, VNTR3192), MIRU26 (VNTR2996), QUB11a (VNTR2163a), QUB11b (VNTR2163b), QUB26 (VNTR4052), and QUB3232 (VNTR3232). We found a high degree of diversity among the studied isolates (discriminatory index [D] = 0.9856), which were split into 65 different MIRU-VNTR types. An alternative short-format MIRU-VNTR typing targeting only the four loci with the highest variability values was found to offer an equivalent discriminatory index. Minimum spanning trees using the MIRU-VNTR data showed the hypothetical evolution of an apparent clonal group. MIRU-VNTR analysis was also applied to the isolates of 176 animals from 15 farms infected by M. bovis SB0121; in 10 farms, the analysis revealed the coexistence of two to five different MIRU types differing in one to six loci, which highlights the frequency of undetected heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the attempt to trace the first Mycobacterium bovis outbreak in alpacas (Lama pacos) in Spain by spoligotyping and variable-number tandem-repeat (VNTR) analysis. Due to high genotype diversity, no matching source was identified, but local expansion of a clonal group was found and its significance for molecular tracing is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six hundred twenty-one samples from Portugal, the Cabo Verde archipelago, and Guinea-Bissau were typed for HLA-A, HLA-B, and HLADRB1usingthepolymerasechainreaction–sequence-specificoligonucleotide probe (PCR-SSOP) method and the sequence-based typing (SBT) method to characterizeandcomparediscrepanciesbetweenthetwomethods.Fifty-three alleles (4.27% of 1,242 chromosomes typed) identified by the PCR-SSOP method were not concordant with the results obtained using the SBT method. Thirty-four (2.74% of total chromosomes typed) PCR-SSOP mistyping results were discrepancies inside the same allele group and 19 others (1.53% of total chromosomes typed) were relative to nonconcordant results between different groups. PCR-SSOP allele mistyping is the result of interpretation difficulties resulting from less intense, absent, or dubious hybridization patterns. Noncommercial PCR-SSOP procedures are highly exigent on the technicians’ experience and the availability of properly calibrated high-precision equipment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programs written in languages of the Oberon family usually contain runtime tests on the dynamic type of variables. In some cases it may be desirable to reduce the number of such tests. Typeflow analysis is a static method of determining bounds on the types that objects may possess at runtime. We show that this analysis is able to reduce the number of tests in certain plausible circumstances. Furthermore, the same analysis is able to detect certain program errors at compile time, which would normally only be detected at program execution. This paper introduces the concepts of typeflow analysis and details its use in the reduction of runtime overhead in Oberon-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim was to determine the evolutionary position of the Staphylococcus aureus clonal complex 75 (CC75) that is prevalent in tropical northern Australia. Sequencing of gap, rpoB, sodA, tuf, and hsp60 and the multilocus sequence typing loci revealed a clear separation between conventional S. aureus and CC75 and significant diversity within CC75.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are emerging in southeast Queensland, Australia, but the incidence of carriage of CA-MRSA strains is unknown. The aim of this study was to assess the nasal carriage rate of S. aureus, including CA-MRSA strains, in the general adult population of southeast Queensland. 396 patients presenting to general practices in two Brisbane suburbs and 303 volunteers randomly selected from the electoral rolls in the same suburbs completed a medical questionnaire and had nasal swabs performed for S. aureus. All isolates of S. aureus underwent antibiotic susceptibility testing and single-nucleotide polymorphism (SNP) and binary typing, including determination of Panton–Valentine leukocidin (PVL). The nasal carriage rate of methicillin-susceptible S. aureus (MSSA) was 202/699 (28%), a rate similar to that found in other community-based nasal carriage studies. According to multivariate analysis, nasal carriage of S. aureus was associated with male sex, young adult age group and Caucasian ethnicity. Only two study isolates (one MSSA and one CA-MRSA) carried PVL. The nasal carriage rate of MRSA was low, at 5/699 (0.7%), and only two study participants (0.3%) had CA-MRSA strains. CA-MRSA is an emerging cause of infection in southeast Queensland, but as yet the incidence of carriage of CA-MRSA in the general community is low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The goal of this conceptual paper is to provide tools to help maximise the value delivered by infrastructure projects, by developing methods to increase adoption of innovative products during construction. Methods: The role of knowledge flows in determining innovation adoption rates is conceptually examined. A promising new approach is developed. Open innovation system theory is extended, by reviewing the role of three frameworks: (1) knowledge intermediaries, (2) absorptive capacity and (3) governance arrangements. Originality: We develop a novel open innovation system model to guide further research in the area of adoption of innovation on infrastructure projects. The open innovation system model currently lacks definition of core concepts, especially with regard to the impact of different degrees and types of openness. The three frameworks address this issue and add substance to the open innovation system model, addressing widespread criticism that it is underdeveloped. The novelty of our model is in the combination of the three frameworks to explore the system. These frameworks promise new insights into system dynamics and facilitate the development of new methods to optimise the diffusion of innovation. Practical Implications: The framework will help to reveal gaps in knowledge flows that impede the uptake of innovations. In the past, identifying these gaps has been difficult given the lack of nuance in existing theory. The knowledge maps proposed will enable informed policy advice to effectively harness the power of knowledge networks, increase innovation diffusion and improve the performance of infrastructure projects. The models developed in this paper will be used in planned empirical research into innovation on large scale infrastructure projects in the Australian built environment.