951 resultados para Animation apparatus
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
Vorbesitzer: Bartholomaeusstift Frankfurt am Main
Resumo:
The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.
Resumo:
Vorbesitzer: Bartholomaeusstift Frankfurt am Main
Resumo:
subministravit Ioh Gottlob Carpzov
Resumo:
This invention relates generally to grain threshing apparatus and in particular to an apparatus for threshing grain wherein an impeller is rotatable within a concave or tubular screen. This application is a division of application Serial No. 560,552, now Patent No. 2,906,270. An object of this invention is to provide an improved apparatus for threshing grain.
Resumo:
Three complementary imaging techniques were used to describe a complex rosette-shaped microboring that penetrates the shells of brachiopods from the OrdovicianSilurian shallow marine limestones of Anticosti Island, Canada. Pyrodendrina cupra n. igen. and isp. is among the oldest dendrinid microborings and consists of shallow and deep penetrating canals that radiate from a central polygonal chamber. The affinity of the tracemaker is unknown, but a foraminiferal origin, as proposed for some dendrinid borings, is rejected. Combining microCT with traditional stereomicroscopy and SEM helped distinguish and quantify fine morphological features while maintaining contextual information of the microboring within the shell substrate. Different imaging techniques inherently bias the description of microborings. These biases must be accounted for as new methods in ichnotaxonomy are integrated with past research based on different methods.
Resumo:
Endolithic bioerosion is difficult to analyse and to describe, and it usually requires damaging of the sample material. Sponge erosion (Entobia) may be one of the most difficult to evaluate as it is simultaneously macroscopically inhomogeneous and microstructurally intricate. We studied the bioerosion traces of the two Australian sponges Cliona celata Grant, 1826 (sensu Schönberg 2000) and Cliona orientalis Thiele, 1900 with a newly available radiographic technology: high resolution X-ray micro-computed tomography (MCT). MCT allows non-destructive visualisation of live and dead structures in three dimensions and was compared to traditional microscopic methods. MCT and microscopy showed that C. celata bioerosion was more intense in the centre and branched out in the periphery. In contrast, C. orientalis produced a dense, even trace meshwork and caused an overall more intense erosion pattern than C. celata. Extended pioneering filaments were not usually found at the margins of the studied sponge erosion, but branches ended abruptly or tapered to points. Results obtained with MCT were similar in quality to observations from transparent optical spar under the dissecting microscope. Microstructures could not be resolved as well as with e.g. scanning electron microscopy (SEM). Even though sponge scars and sponge chips were easily recognisable on maximum magnification MCT images, they lacked the detail that is available from SEM. Other drawbacks of MCT involve high costs and presently limited access. Even though MCT cannot presently replace traditional techniques such as corrosion casts viewed by SEM, we obtained valuable information. Especially for the possibility to measure endolithic pore volumes, we regard MCT as a very promising tool that will continue to be optimised. A combination of different methods will produce the best results in the study of Entobia.
Resumo:
The video FireMovie_2000-2011.avi shows an animation with all MODIS fire product maps of the area sequenced over time. Colors in the video describe MODIS classes as follows: MODIS classification and color scale: Class 0 - not processed - Dark blue (1 frame) Class 3 - water - Light Blue (rivers and some lakes) Class 4 - clouds - Green blue Class 5 - non fire land - Yellow green Class 8 - nominal confidence fire - Red Class 9 - high confidence fire - Dark red
Resumo:
Fecha de imp. del colofón 1602
Resumo:
Pie de imp. tomado del colofón en D10v y F6r