966 resultados para Amyloid Vorläufer Protein (APP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIMS: Cognitive decline in Alzheimer's disease (AD) patients has been linked to synaptic damage and neuronal loss. Hyperphosphorylation of tau protein destabilizes microtubules leading to the accumulation of autophagy/vesicular material and the generation of dystrophic neurites, thus contributing to axonal/synaptic dysfunction. In this study, we analyzed the effect of a microtubule-stabilizing compound in the progression of the disease in the hippocampus of APP751SL/PS1M146L transgenic model. METHODS: APP/PS1 mice (3 month-old) were treated with a weekly intraperitoneal injection of 2 mg/kg epothilone-D (Epo-D) for 3 months. Vehicle-injected animals were used as controls. Mice were tested on the Morris water maze, Y-maze and object-recognition tasks for memory performance. Abeta, AT8, ubiquitin and synaptic markers levels were analyzed by Western-blots. Hippocampal plaque, synaptic and dystrophic loadings were quantified by image analysis after immunohistochemical stainings. RESULTS: Epo-D treated mice exhibited a significant improvement in the memory tests compared to controls. The rescue of cognitive deficits was associated to a significant reduction in the AD-like hippocampal pathology. Levels of Abeta, APP and ubiquitin were significantly reduced in treated animals. This was paralleled by a decrease in the amyloid burden, and more importantly, in the plaque-associated axonal dystrophy pathology. Finally, synaptic levels were significantly restored in treated animals compared to controls. CONCLUSION: Epo-D treatment promotes synaptic and spatial memory recovery, reduces the accumulation of extracellular Abeta and the associated neuritic pathology in the hippocampus of APP/PS1 model. Therefore, microtubule stabilizing drugs could be considered therapeutical candidates to slow down AD progression. Supported by FIS-PI12/01431 and PI15/00796 (AG),FIS-PI12/01439 and PI15/00957(JV)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Physical protein-protein interaction (PPI) is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results: We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners) in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains), self-interacting (able to interact with another copy of themselves) and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions: Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic infusion of human amyloid-beta 1-40 (A beta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of A beta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of A beta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of A beta. Male C57BI/6 J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12 weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550 pmol, 0.12 mu L/h, 28 days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (TO), 7 and 35 days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt = 59.7 +/- 6.7%; CkoB1 = 46.7 +/- 4.0%; CkoB2 = 64.4 +/- 5.8%) and A beta (A beta wt = 66.0 +/- 3.0%; A beta koB1 = 66.8 +/- 8.2%; A beta koB2 = 58.7 +/- 5.9%) groups. In T7, A beta koB2 showed a significant decrease in CAR (41.0 +/- 8.6%) compared to the control-koB2 (72.8 +/- 2.2%, P <0.05). In T35, a significant decrease (P <0.05) was observed in A beta wt (40.7 +/- 3.3%) and A beta koB2 (41.2 +/- 10.7%) but not in the A beta koB1 (64.0 +/- 14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could playan important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serum amyloid A (SAA), a classical acute-phase protein, is produced predominantly by hepatocytes in response to injury, infection, and inflammation. It has been shown that SAA primes leukocytes and induces the expression and release of proinflammatory cytokines. Here, we report that SAA induces NO production by murine peritoneal macrophages. Using specific inhibitors, we showed that NO production was dependent on inducible NO synthase thorough the activation of ERK1/2 and p38 MAPKs. Moreover, SAA activity was decreased after proteolysis but not with polymyxin B, a lipid A antagonist. Finally, we found that NO production was dependent on functional TLR4, a receptor complex associated with innate immunity. Macrophages from C3H/HeJ and C57BL/10ScCr mice lacking a functional TLR4 did not respond to SAA stimulation. In conclusion, our study makes a novel observation that SAA might be an endogenous agonist for the TLR4 complex on macrophages. The contribution of this finding in amplifying innate immunity during the inflammatory process is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution structure of A beta(1-40)Met(O), the methionine-oxidized form of amyloid beta-peptide A beta(1-40), has been investigated by CD and NMR spectroscopy. Oxidation of Met35 may have implications in the aetiology of Alzheimer's disease. Circular dichroism experiments showed that whereas A beta(1-40) and A beta(1-40)Met(O) both adopt essentially random coil structures in water (pH 4) at micromolar concentrations, the former aggregates within several days while the latter is stable for at least 7 days under these conditions. This remarkable difference led us to determine the solution structure of A beta(1-40)Met(O) using H-1 NMR spectroscopy. In a water-SDS micelle medium needed to solubilize both peptides at the millimolar concentrations required to measure NMR spectra, chemical shift and NOE data for A beta(1-40)Met(O) strongly suggest the presence of a helical region between residues 16 and 24. This is supported by slow H-D exchange of amide protons in this region and by structure calculations using simulated annealing with the program XPLOR. The remainder of the structure is relatively disordered. Our previously reported NMR data for A beta(1-40) in the same solvent shows that helices are present over residues 15-24 (helix 1) and 28-36 (helix 2), Oxidation of Met35 thus causes a local and selective disruption of helix 2. In addition to this helix-coil rearrangement in aqueous micelles, the CD data show that oxidation inhibits a coil-to-beta-sheet transition in water. These significant structural rearrangements in the C-terminal region of A beta may be important clues to the chemistry and biology of A beta(1-40) and A beta(1-42).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregates of the amyloid-P peptide (A beta) play a central role in the pathogenesis of Alzheimer`s disease (AD). Identification of proteins that physiologically bind A beta and modulate its aggregation and neurotoxicity could lead to the development of novel disease-modifying approaches in AD. By screening a phage display peptide library for high affinity ligands of aggregated A beta(1-42), We isolated a peptide homologous to a highly conserved amino acid sequence present in the N-terminus of apolipoprotein A-I (apoA-I). We show that purified human apoA-I and A beta form non-covalent complexes and that interaction with apoA-I affects the morphology of amyloid aggregates formed by A beta. Significantly, A beta/apoA-I complexes were also detected in cerebrospinal fluid from AD patients. Interestingly, apoA-I and apoA-I-containing reconstituted high density lipoprotein particles protect hippocampal neuronal cultures from A beta-induced oxidative stress and neurodegeneration. These results suggest that human apoA-I modulates A beta aggregation and A beta-induced neuronal damage and that the A beta-binding domain in apoA-I may constitute a novel framework for the design of inhibitors of A beta toxicity. (C) 2009 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the literature, concepts of “polyneuropathy”, “peripheral neuropathy” and “neuropathy” are often mistakenly used as synonyms. Polyneuropathy is a specific term that refers to a relatively homogenous process that affects multiple peripheral nerves. Most of these tend to present as symmetric polyneuropathies that first manifest in the distal portions of the affected nerves. Many of these distal symmetric polyneuropathies are due to toxic-metabolic causes such as alcohol abuse and diabetes mellitus. Other distal symmetric polyneuropathies may result from an overproduction of substances that result in nerve pathology such as is observed in anti-MAG neuropathy and monoclonal gammopathy of undetermined significance. Other “overproduction” disorders are hereditary such as noted in the Portuguese type of familial amyloid polyneuropathy (FAP). FAP is a manifestation of a group of hereditary amyloidoses; an autosomal dominant, multisystemic disorder wherein the mutant amyloid precursor, transthyretin, is produced in excess primarily by the liver. The liver accounts for approximately 98% of all transthyretin production. FAP is confirmed by detecting a transthyretin variant with a methionine for valine substitution at position 30 [TTR (Met30)]. Familial Amyloidotic Polyneuropathy (FAP) – Portuguese type was first described by a Portuguese neurologist, Corino de Andrade in 1939 and published in 1951. Most persons with this disorder are descended from Portuguese sailors who sired offspring in various locations, primarily in Sweden, Japan and Mallorca. Their descendants emigrated worldwide such that this disorder has been reported in other countries as well. More than 2000 symptomatic cases have been reported in Portugal. FAP progresses rapidly with an average time course from symptom onset to multi-organ involvement and death between ten and twenty years. Treatments directed at removing this aberrant protein such as plasmapheresis and immunoadsorption proved to be unsuccessful. Liver transplantation has been the only effective solution as evidenced by almost 2000 liver transplants performed worldwide. A therapy for FAP with a novel agent, “Tafamidis” has shown some promise in ongoing phase III clinical trials. It is well recognized that regular physical activity of moderate intensity has a positive effect on physical fitness as gauged by body composition, aerobic capacity, muscular strength and endurance and flexibility. Physical fitness has been reported to result in the reduction of symptoms and lesser impairment when performing activities of daily living. Exercise has been advocated as part of a comprehensive approach to the treatment of chronic diseases. Therefore, this chapter concludes with a discussion of the role of exercise training on FAP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

17β-hydroxysteroid dehydrogenase 10 (HSD10) deficiency is a rare X-linked inborn error of isoleucine catabolism. Although this protein has been genetically implicated in Alzheimer's disease pathogenesis, studies of amyloid-β peptide (Aβ) in patients with HSD10 deficiency have not been previously reported. We found, in a severely affected child with HSD10 deficiency, undetectable levels of Aβ in the cerebrospinal fluid, together with low expression of brain-derived neurotrophic factor, α-synuclein, and serotonin metabolites. Confirmation of these findings in other patients would help elucidating mechanisms of synaptic dysfunction in this disease, and highlight the role of Aβ in both early and late periods of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ(-/-) mice. Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immunopathophysiologic development of systemic autoimmunity involves numerous factors through complex mechanisms that are not fully understood. In systemic lupus erythematosus, type I IFN (IFN-I) produced by plasmacytoid dendritic cells (pDCs) critically promotes the autoimmunity through its pleiotropic effects on immune cells. However, the host-derived factors that enable abnormal IFN-I production and initial immune tolerance breakdown are largely unknown. Previously, we found that amyloid precursor proteins form amyloid fibrils in the presence of nucleic acids. Here we report that nucleic acid-containing amyloid fibrils can potently activate pDCs and enable IFN-I production in response to self-DNA, self-RNA, and dead cell debris. pDCs can take up DNA-containing amyloid fibrils, which are retained in the early endosomes to activate TLR9, leading to high IFNα/β production. In mice treated with DNA-containing amyloid fibrils, a rapid IFN response correlated with pDC infiltration and activation. Immunization of nonautoimmune mice with DNA-containing amyloid fibrils induced antinuclear serology against a panel of self-antigens. The mice exhibited positive proteinuria and deposited antibodies in their kidneys. Intriguingly, pDC depletion obstructed IFN-I response and selectively abolished autoantibody generation. Our study reveals an innate immune function of nucleic acid-containing amyloid fibrils and provides a potential link between compromised protein homeostasis and autoimmunity via a pDC-IFN axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To analyze components of the deposits in the corneal flap interface of granular corneal dystrophy type II (GCD II) patients after laser in situ keratomileusis (LASIK). METHODS: Four corneal GCD II specimens displaying disease exacerbation after LASIK were analyzed. Three of these specimens included the recipient corneal button after penetrating keratoplasty or deep lamellar keratoplasty for advanced GCD II after LASIK. The fourth specimen, a similar case of GCD II after LASIK, included the amputated corneal flap. Specimens were processed for histopathologic and immunohistochemical analyses. RESULTS: Corneal stromal deposits in the LASIK flaps of all specimens were stained with 3 anti-transforming growth factor-beta-induced protein (TGFBIp) antibodies. The deposits displayed bright red color staining with Masson trichrome; however, negative staining was seen with Congo red, suggesting that hyaline is the main component localizing to the TGFBIp deposits rather than amyloid. CONCLUSIONS: Amorphous granular material deposited along the interface of the LASIK flap in GCD II corneas is composed mainly of hyaline deposits.