566 resultados para Amphibians.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karyotypes of Leposoma show a clear differentiation between species of the scincoides group from Brazilian Atlantic Forest (2n = 52, without distinctive size groups of chromosomes) and those of the parietale group from the Amazon (2n = 44, with 20M + 24m). In a previous study, we found that in the parietale group the parthenoform Leposoma percarinatum from the state of Mato Grosso, Brazil, exhibited a triploid karyotype (3n = 66) with 30 macrochromosomes and 36 microchromosomes. It was suggested that this karyotype arose after hybridization between a bisexual species with N = 22 (10M + 12m) and a hypothetical unisexual cryptic diploid form of the L. percarinatum complex. Herein, we describe the karyotypes for two species of the parietale group occurring sympatrically in the Arquipelago das Anavilhanas, lower Rio Negro, in Amazonian Brazil. The first represents a distinctive diploid parthenogenetic clone of the L. percarinatum complex, and the other is the recently described Leposoma ferreirai. Both species have 44 biarmed chromosomes clearly represented by 20 macrochromosomes and 24 microchromosomes and present Ag-NORs in one pair of the smallest sized microchromosomes; heteromorphism of size for these regions was detected in L. percarinatum. C-banding revealed blocks of constitutive heterochromatin on the telomeric and pericentromeric regions of macrochromosomes and some microchromosomes. The description of a diploid karyotype (2n = 44, 20M + 24m) for the L. percarinatum complex and its sympatric congener L. ferreirai provides new insight for a better understanding of the origin of parthenogenesis in the L. percarinatum complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammals, much is understood about the endothelial and neural NO control mechanisms in the vasculature. In contrast, NO control of blood vessels in lower vertebrates is poorly understood, with the majority of research focusing on the presence of an endothelial NO system; however, its presence remains controversial. This study examined the mechanisms by which NO regulates the large blood vessels of non-mammalian vertebrates. In all species examined, the arteries and veins contained a plexus of NOS-positive perivascular nerves that included nerve bundles and fine, varicose nerve terminals. However, in the large arteries and veins of various species of fishes and amphibians, no anatomical evidence was found for endothelial NOS using both NADPH-diaphorase and eNOS immunohistochemistry. In contrast, perinuclear NOS staining was readily apparent in blue-tongue lizard, pigeon and rat, which suggested that eNOS first appeared in reptiles. Physiological analysis of NO signalling in the vascular smooth muscle of short-finned eel and cane toad could not find any evidence for endothelial NO signalling. In contrast, it appears that activation of the nitrergic vasomotor nerves is responsible for NO control of the blood vessels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Urban ecosystems are expanding throughout the world, and urban ecology is attracting increasing research interest. Some authors have questioned the value of existing ecological theories for understanding the processes and consequences of urbanization.
2. In order to assess the applicability of metacommunity theory to urban systems, I evaluated three assumptions that underlie the theory – the effect of patch area, the effect of patch isolation, and species–environment relations – using data on assemblages of pond-breeding amphibians in the Greater Melbourne area of Australia. I also assessed the relative impact of habitat fragmentation, habitat isolation, and changes to habitat quality on these assemblages.
3. Poisson regression modelling provided support for an important increase in species richness with patch area (pond size) and a decrease in species richness with increasing patch isolation, as measured by surrounding road cover. Holding all other variables constant, species richness was predicted to be 2·8–5·5 times higher at the largest pond than at the smallest, while the most isolated pond was predicted to have 12–19% of the species richness of the least isolated pond. Thus, the data were consistent with the first two assumptions of metacommunity theory evaluated.
4. The quality of habitat at a pond was also important, with a predicted 44–56% decrease in the number of species detected at ponds with a surrounding vertical wall compared with those with a gently sloping bank. This demonstrates that environmental differences between habitat patches were also influencing amphibian assemblages, providing support for the species-sorting and/or mass-effect perspectives of metacommunity theory.
5. Without management intervention, urbanization may lead to a reduction in the number of amphibian species persisting in urban ponds, particularly where increasing isolation of ponds by roads and associated infrastructure reduces the probability of re-colonization following local extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natriuretic peptide (NP) system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. In amphibians, the potential role(s) of NPs is complicated by the range of osmoregulatory strategies found in amphibians, and the different tissues that participate in osmoregulation. Atrial NP, brain NP, and C-type NP have been isolated or cloned from a number of species, which has enabled physiological studies to be performed with homologous peptides. In addition, three types of NP receptors have been cloned and partially characterised. Natriuretic peptides are always potent vasodilators in amphibian blood vessels, and ANP has been shown to increase the permeability of the microcirculation. In the perfused kidney, ANP causes vasodilation, diuresis and natriuresis that are caused by an increased GFR rather than effects in the renal tubules. These data are supported by the presence of ANP receptors only on the glomeruli and renal blood vessels. In the bladder and skin, the function of NPs is enigmatic because physiological analysis of the effects of ANP on bladder and skin function has yielded conflicting data with no clear role for NPs being revealed. Overall, NPs often have no direct effect, but in some studies they have been shown to inhibit the function of AVT. In addition, there is evidence that ANP can inhibit salt retention in amphibians since it can inhibit the ability of adrenocorticotrophic hormone or angiotensin II to stimulate corticosteroid secretion. It is proposed that an important role for cardiac NPs could be in the control of hypervolaemia during periods of rapid rehydration, which occurs in terrestrial amphibians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and B-type NP (BNP) are hormones involved in homeostatic control of body fluid and cardiovascular regulation. Both ANP and BNP have been cloned from the heart of mammals, amphibians, and teleost fishes, while an additional cardiac peptide, ventricular NP, has been found in selected species of teleost fish. However, in chicken, BNP is the primary cardiac peptide identified thus far. In contrast, the types of NP/s present in the reptilian heart are unknown, representing a considerable gap in our understanding of NP evolution. In the present study, we cloned and sequenced a BNP cDNA from the atria of representative species of reptile, including crocodile, lizard, snake, and tortoise. In addition, we cloned BNP from the pigeon atria. The reptilian and pigeon BNP cDNAs had ATTTA repeats in the 3′ untranslated region, as observed in all vertebrate BNP mRNAs. A high sequence homology was evident when comparing reptile and pigeon preproBNP with the previously identified chicken preproBNP. In particular, the predicted mature BNP-29 was identical between crocodile, tortoise, and chicken, with pigeon having a single amino acid substitution; lizard and snake BNP had seven and nine substitutions, respectively. Furthermore, an ANP cDNA could only be cloned from the tortoise atria. Since ANP was not isolated from the heart of any non-chelonian reptile and appears to be absent in birds, we propose that the ANP gene has been lost after branching of the turtles in the amniote line. This data provides new avenues for research on NP function in reptiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are members of a family of hormones that play an important role in mammalian fluid and electrolyte balance. In the periphery, natriuretic peptides reduce blood volume and subsequently blood pressure by increasing renal natriuresis and diuresis and relaxation of vascular smooth muscle. The actions of natriuretic peptides are mediated via two membrane-linked guanylate cyclase receptors (NPR-GC); natriuretic peptide receptor-A (NPR-A) which has a high affinity for ANP and BNP; and natriuretic peptide receptor-B (NPR-B)which has the greatest affinity for CNP. A third receptor not linked to guanylate cyclase, natriuretic peptide receptor-C (NPR-C) also exists, which binds to ANP, BNP and CNP with a relatively equal affinity, and is involved with clearance of the peptides from the circulation and tissues. The natriuretic peptides are present in the brain and are particularly predominant in cardiovascular and fluid and electrolyte regulating areas such as the anteroventral third ventricle (AV3V) region. This distribution has led to the suggestion natriuretic peptides play a neuromodulatory role in the central control of fluid homeostasis. Natriuretic peptides in the brain have been observed to inhibit the release of other fluid and electrolyte regulating hormones such as arginine vasopressin (AVP) and angiotensin II (AII). Natriuretic peptides have also been identified in the non-mammalian vertebrates although information regarding the distribution of the peptides and their receptors in the non-mammalian brain is limited. In amphibians, immunohistochemical studies have shown that natriuretic peptides are highly concentrated in the preoptic region of the brain, an area believed to be analogous to the A\T3\ region in mammals, which suggests that natriuretic peptides may also be involved in central fluid and electrolyte regulation in amphibians. To date, CNP is the only natriuretic peptide that has been isolated and cloned from the lower vertebrate brain, although studies on the distribution of CNP binding sites in the brain have only been performed in one fish species. Studies on the distribution of ANP binding sites in the lower vertebrate brain are similarly limited and have only been performed in one fish and two amphibian species. Moreover, the nature and distribution of the natriuretic peptide receptors has not been characterised. The current study therefore, used several approaches to investigate the distribution of natriuretic peptides and their receptors in the brain of the amphibian Bufo marinus. The topographical relationship of natriuretic peptides and the fluid and electrolyte regulating hormone arginine vasotocin was also investigated, in order to gain a greater understanding of the role of the natriuretic peptide system in the lower vertebrate brain. Immunohistochemical studies showed natriuretic peptides were distributed throughout the brain and were highly concentrated in the preoptic region and interpeduncular nucleus. No natriuretic peptide-like immunoreactivity (NP-IR) was observed in the pituitary gland. Arginine vasotocin-like immunoreactivity (AvT-IR) was confined to distinct regions, particularly in the preoptic/hypothalamic region and pituitary gland. Double labelling studies of NP-JR and AvT-IR showed the peptides are not colocalised in the same neural pathways. The distribution of natriuretic peptide binding sites using the ligands 125I-rat ANP (125I-rANP) and 125I-porcine CNP (125I-pCNP) showed different distributions in the brain of B. marinus. The specificity of binding was determined by displacement with unlabelled rat ANP, porcine CNP and C-ANF, an NPR-C specific ligand. 125I-rANP binding sites were broadly distributed throughout the brain with the highest concentration in pituitary gland, habenular, medial pallium and olfactory region. Minimal 125I-rANP binding was observed in the preoptic region. Residual 125I-rANP binding in the presence of C-ANF was observed in the olfactory region, habenular and pituitary gland indicating the presence of both NPR-GC and NPR-C in these regions. 125I-pCNP binding was limited to the olfactory region, pallium and posterior pituitary gland. All 125I-pCNP binding was displaced by C-ANF which suggests that CNP in the brain of B. marinus binds only to NPR-C. Affinity cross-linking and SDS-PAGB demonstrated two binding sites at 136 kDa and 65 kDa under reducing conditions. Guanylate cyclase assays showed 0.1 µM ANP increased cGMP levels 50% above basal whilst a 10-fold higher concentration of CNP was required to produce the same result. Molecular cloning studies revealed a 669 base pair fragment showing 91% homology with human and rat NPR-A and 89% homology with human, rat and eel NPR-B. A 432 base pair fragment showing 67% homology to the mammalian NPR-C and 58% homology with eel NPR-D was also obtained. The results show natriuretic peptides and their receptors are distributed throughout the brain of B. marinus which indicates that natriuretic peptides may participate in a range of regulatory functions throughout the brain. The potential for natriuretic peptides to regulate the release of the fluid and electrolyte regulating hormone AVT also exists due to the high number of natriuretic peptide binding sites in the posterior pituitary gland. At least two populations of natriuretic peptide receptors are present in the brain of B. marinus, one linked to guanylate cyclase and one resembling the mammalian clearance receptor. Furthermore, autoradiography and guanylate cyclase studies suggest ANP may be the major ligand in the brain of B. marinus, even though CNP is the only natriuretic peptide that has been isolated from the lower vertebrate brain to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sperm number is often a good predictor of success in sperm competition; however, it has become increasingly clear that, for some species, variation in probability of paternity cannot be explained by sperm number alone. Intraspecific variation in ejaculate characteristics, such as the number of viable sperm and sperm longevity, may play an equally important role in determining fertilization success. Here, we assess variation among ejaculates in three factors that may contribute to fertilization success (number of sperm per ejaculate, viability, and longevity), in a population of Peron’s tree frog (Litoria peronii). We detected large variation among males in the number of sperm per ejaculate and the proportion of viable sperm within ejaculates, which could not be explained by variation in either male size or body condition. However, the proportion of viable sperm released by males increased over the season. Finally, we assessed sperm longevity (proportion viable sperm determined using a dual-fluorochrome vital dye) at two different temperatures. At 23°C, on average, 75% of sperm remained viable after 2 h, but there were significant differences amongst males with the percentage of viable sperm ranging from 43% to 95%. For sperm incubated at 4°C, ejaculates varied fivefold in sperm longevity with some males having 50% viable sperm after 5 days. Our data suggest that ejaculate characteristics (sperm number, viability, and longevity) vary widely in Peron’s tree frog and may therefore play an important role in determining siring success both in the presence and absence of sperm competition. We discuss the results in relation to selection on ejaculate traits via natural and sexual selection in this and other amphibians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
A large number of studies in postcopulatory sexual selection use paternity success as a proxy for fertilization success. However, selective mortality during embryonic development can lead to skews in paternity in situations of polyandry and sperm competition. Thus, when assessment of paternity fails to incorporate mortality skews during early ontogeny, this may interfere with correct interpretation of results and subsequent evolutionary inference. In a previous series of in vitro sperm competition experiments with amphibians (Litoria peronii), we showed skewed paternity patterns towards males more genetically similar to the female.

Methodology/Principal Findings
Here we use in vitro fertilizations and sperm competition trials to test if this pattern of paternity of fully developed tadpoles reflects patterns of paternity at fertilization and if paternity skews changes during embryonic development. We show that there is no selective mortality through ontogeny and that patterns of paternity of hatched tadpoles reflects success of competing males in sperm competition at fertilization.

Conclusions/Significance
While this study shows that previous inferences of fertilization success from paternity data are valid for this species, rigorous testing of these assumptions is required to ensure that differential embryonic mortality does not confound estimations of true fertilization success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing theoretical and empirical evidence that genetic compatibility among partners is an important determinant of fertilization success and offspring viability. In amphibians, females often actively choose partners from among a variety of males and polyandry is common. Genetic compatibility among partners may therefore be an important determinant of fertilization success and offspring viability in some amphibians. Amphibians also show some of the highest levels of genetic differentiation among neighbouring populations known in vertebrates, and as such, populations may have evolved different co-adapted gene complexes. This means that offspring from among-population crosses may have reduced fitness. It is therefore essential to understand to what extent crossings between and within populations may interfere with successful fertilization and offspring viability. Here, we test whether crossing individuals within and between two different populations of the Australian Peron's tree frog (Litoria peronii) using artificial fertilizations affect fertilization success and offspring viability. Fertilization success per se is strongly influenced by male identity, which is likely to depend at least to some extent on the experimental procedure (e.g. resulting in variation in sperm number per ejaculate), whereas there was no fertilization effect of female identity. More importantly, male and female identity, independently of each other, explained significant variation in offspring viability, whereas no such effect could be linked to population of origin. Thus, our experiments suggest that crossing populations may not always be the most significant factor affecting fertilization success or offspring viability, but may be more influenced by the genetic quality or the genetic compatibility of partners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natriuretic peptide system is a family of related proteins that in humans function to reduce blood pressure and blood volume. However, in amphibians the function is less well understood. This thesis demonstrates that the amphibian, Bufo marinus, possesses a well-developed natriuretic peptide system that is capable of responding to changes induced by dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide is an important regulator of blood pressure in mammals. This study provided new information on the role of nitric-oxide releasing sympathetic nerves in vascular regulation of lower vertebrates. The research outcomes advance knowledge on the potential role of these unique nerves in the control of the lower vertebrate cardiovascular system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Documents predation of Regal Striped Skink (Ctenotus regius) by Grey Butcherbird (Cracticus torquatus) in the mallee of northern Victoria

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Studies of mate choice in anuran amphibians have shown female preference for a wide range of male traits despite females gaining no direct resources from males (i.e. non-resource based mating system). Nevertheless, theoretical and empirical studies have shown that females may still gain indirect genetic benefits from choosing males of higher genetic quality and thereby increase their reproductive success.
Methodology/Principal Findings: We investigated two components of sexual selection in the Moor frog (Rana arvalis), precopulatory female choice between two males of different size (‘large’ vs. ‘small’), and their fertilization success in sperm competition and in isolation. Females’ showed no significant preference for male size (13 small and six large male preferences) but associated preferentially with the male that subsequently was the most successful at fertilizing her eggs in isolation. Siring success of males in competitive fertilizations was unrelated to genetic similarity with the female and we detected no effect of sperm viability on fertilization success. There was, however, a strong positive association between a male’s innate fertilization ability with a female and his siring success in sperm competition. We also detected a strong negative effect of a male’s thumb length on his competitive siring success.
Conclusions/Significance: Our results show that females show no preference for male size but are still able to choose males which have greater fertilization success. Genetic similarity and differences in the proportion of viable sperm within a males ejaculate do not appear to affect siring success. These results could be explained through pre- and/or postcopulatory choice for genetic benefits and suggest that females are able to perceive the genetic quality of males, possibly basing their choice on multiple phenotypic male traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research examined aspects of the cyclic GMP signalling system in fish and amphibians. It contributed new knowledge to our understanding of the role of the system in the development of zebrafish, a model fish species, and in control of the vasculature by the regulatory molecule, nitric oxide.