1000 resultados para Alph-L-eduronidase
Resumo:
Digital Image
Resumo:
The Herz twins were born 4 February 1913
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
This project will develop better understanding of resistance to glyphosate, paraquat and Group I herbicides to better inform weed management. The project will develop a range of tools for farm advisors to improve their confidence in decision making with respect to reducing the risk of glyphosate, Group I and paraquat resistance. These will include risk assessments, case studies and scenario exploring tools. The project will discuss with commercial providers the potential for new herbicide registrations. The project will establish farm advisor learning groups to work on the application of the research in local areas where resistance is already a major problem and to improve adoption of research outcomes from this and other projects.
Resumo:
Review of the biology of the Australian weed Baccharis halimifolia. This paper reviews the morphology, geographical distribution, habitat, growth and development, reproduction (flowering, seed production and dispersal, and seed germination), hybrids, population dynamics, importance (detrimental and beneficial), legislation, and control (using mechanical methods, herbicides and biological control agents/natural enemies) of an invasive alien species, B. shall.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.
Resumo:
Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R (2) sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.
Resumo:
Intramolecularly hydrogen bonded conformations of (Aib-Pro)n sequences have been analysed theoretically. Both 4-1 (C10 and 3-1 (C7 hydrogen bonded regular structures are shown to be stereochemically feasible. Conformational energies for the helical structures have been estimated using classical potential energy methods. Both C10 and C7 conformations have very similar energies. Pyrrolidine ring puckering has a pronounced effect on the energies, and only Cv-endo puckered Pro residues can be accommodated. The theoretical calculations using spectroscopic data suggest that the recently proposed novel 310 helical conformation for benzyloxycarbonyl(Aib-Pro)4-methyl ester is in solution, is indeed energetically and stereochemically favourable.
Resumo:
C llH22 N 30 + . C2H302, orthorhombic, P2~2~2~, a = 5.511(2), b = 14.588(4), c = 21.109 (4)A, Z = 4. The structure has been solved using MULTAN and refined to R = 0.079 for 993 observed reflections. The fully extended lysine side chain in the molecule is staggered between the main-chain amino and carbonyl groups. The dipeptide molecules in the crystal structure are arranged in twofold helices centred on 21 screw axes. These helices are interconnected through interactions involving the acetate and the side-chain amino groups. Each acetate group bridges two adjacent side-chain amino groups, related by an a translation, giving rise to an infinitely long chain of alternating negatively charged carboxylate and positively charged amino groups.
Resumo:
An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.