993 resultados para Allan, James C.
Resumo:
Lumbar discectomy is the surgical procedure most frequently performed for patients suffering from low back pain and sciatica. Disc herniation as a consequence of degenerative or traumatic processes is commonly encountered as the underlying cause for the painful condition. While discectomy provides favourable outcome in a majority of cases, there are conditions where unmet requirements exist in terms of treatment, such as large disc protrusions with minimal disc degeneration; in these cases, the high rate of recurrent disc herniation after discectomy is a prevalent problem. An effective biological annular repair could improve the surgical outcome in patients with contained disc herniations but otherwise minor degenerative changes. An attractive approach is a tissue-engineered implant that will enable/stimulate the repair of the ruptured annulus. The strategy is to develop three-dimensional scaffolds and activate them by seeding cells or by incorporating molecular signals that enable new matrix synthesis at the defect site, while the biomaterial provides immediate closure of the defect and maintains the mechanical properties of the disc. This review is structured into (1) introduction, (2) clinical problems, current treatment options and needs, (3) biomechanical demands, (4) cellular and extracellular components, (5) biomaterials for delivery, scaffolding and support, (6) pre-clinical models for evaluation of newly developed cell- and material-based therapies, and (7) conclusions. This article highlights that an interdisciplinary approach is necessary for successful development of new clinical methods for annulus fibrosus repair. This will benefit from a close collaboration between research groups with expertise in all areas addressed in this review.
Resumo:
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
Resumo:
We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.
Resumo:
Satellite-derived data provide the temporal means and seasonal and nonseasonal variability of four physical and biological parameters off Oregon and Washington ( 41 degrees - 48.5 degrees N). Eight years of data ( 1998 - 2005) are available for surface chlorophyll concentrations, sea surface temperature ( SST), and sea surface height, while six years of data ( 2000 - 2005) are available for surface wind stress. Strong cross-shelf and alongshore variability is apparent in the temporal mean and seasonal climatology of all four variables. Two latitudinal regions are identified and separated at 44 degrees - 46 degrees N, where the coastal ocean experiences a change in the direction of the mean alongshore wind stress, is influenced by topographic features, and has differing exposure to the Columbia River Plume. All these factors may play a part in defining the distinct regimes in the northern and southern regions. Nonseasonal signals account for similar to 60 - 75% of the dynamical variables. An empirical orthogonal function analysis shows stronger intra-annual variability for alongshore wind, coastal SST, and surface chlorophyll, with stronger interannual variability for surface height. Interannual variability can be caused by distant forcing from equatorial and basin-scale changes in circulation, or by more localized changes in regional winds, all of which can be found in the time series. Correlations are mostly as expected for upwelling systems on intra-annual timescales. Correlations of the interannual timescales are complicated by residual quasi-annual signals created by changes in the timing and strength of the seasonal cycles. Examination of the interannual time series, however, provides a convincing picture of the covariability of chlorophyll, surface temperature, and surface height, with some evidence of regional wind forcing.
Resumo:
Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species have unique patterns of reactivity, whereas exposure of animals to distinct microbes induces specific serological recognition. Although adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins show specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of Gram-negative and Gram-positive microbes. Thus, host protection against microbes seems to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry.
Resumo:
BACKGROUND AND PURPOSE To address the increasing need to counsel patients about treatment indications for unruptured intracranial aneurysms (UIA), we endeavored to develop a consensus on assessment of UIAs among a group of specialists from diverse fields involved in research and treatment of UIAs. METHODS After composition of the research group, a Delphi consensus was initiated to identify and rate all features, which may be relevant to assess UIAs and their treatment by using ranking scales and analysis of inter-rater agreement (IRA) for each factor. IRA was categorized as very high, high, moderate, or low. RESULTS Ultimately, 39 specialists from 4 specialties agreed (high or very high IRAs) on the following key factors for or against UIA treatment decisions: (1) patient age, life expectancy, and comorbid diseases; (2) previous subarachnoid hemorrhage from a different aneurysm, family history for UIA or subarachnoid hemorrhage, nicotine use; (3) UIA size, location, and lobulation; (4) UIA growth or de novo formation on serial imaging; (5) clinical symptoms (cranial nerve deficit, mass effect, and thromboembolic events from UIAs); and (6) risk factors for UIA treatment (patient age and life expectancy, UIA size, and estimated risk of treatment). However, IRAs for features rated with low relevance were also generally low, which underlined the existing controversy about the natural history of UIAs. CONCLUSIONS Our results highlight that neurovascular specialists currently consider many features as important when evaluating UIAs but also highlight that the appreciation of natural history of UIAs remains uncertain, even within a group of highly informed individuals.
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Resumo:
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
Resumo:
Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. Statement of significance Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.
Resumo:
OBJECTIVE We endeavored to develop an unruptured intracranial aneurysm (UIA) treatment score (UIATS) model that includes and quantifies key factors involved in clinical decision-making in the management of UIAs and to assess agreement for this model among specialists in UIA management and research. METHODS An international multidisciplinary (neurosurgery, neuroradiology, neurology, clinical epidemiology) group of 69 specialists was convened to develop and validate the UIATS model using a Delphi consensus. For internal (39 panel members involved in identification of relevant features) and external validation (30 independent external reviewers), 30 selected UIA cases were used to analyze agreement with UIATS management recommendations based on a 5-point Likert scale (5 indicating strong agreement). Interrater agreement (IRA) was assessed with standardized coefficients of dispersion (vr*) (vr* = 0 indicating excellent agreement and vr* = 1 indicating poor agreement). RESULTS The UIATS accounts for 29 key factors in UIA management. Agreement with UIATS (mean Likert scores) was 4.2 (95% confidence interval [CI] 4.1-4.3) per reviewer for both reviewer cohorts; agreement per case was 4.3 (95% CI 4.1-4.4) for panel members and 4.5 (95% CI 4.3-4.6) for external reviewers (p = 0.017). Mean Likert scores were 4.2 (95% CI 4.1-4.3) for interventional reviewers (n = 56) and 4.1 (95% CI 3.9-4.4) for noninterventional reviewers (n = 12) (p = 0.290). Overall IRA (vr*) for both cohorts was 0.026 (95% CI 0.019-0.033). CONCLUSIONS This novel UIA decision guidance study captures an excellent consensus among highly informed individuals on UIA management, irrespective of their underlying specialty. Clinicians can use the UIATS as a comprehensive mechanism for indicating how a large group of specialists might manage an individual patient with a UIA.
Resumo:
The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.
Resumo:
The occurrence of group G streptococci in cats and evaluation of the recovered organisms as potential human pathogens was investigated. Throat swabs were obtained from 89 cats (47 males and 42 females) and vaginal swabs from 39 female cats. Eighty-three of the examined cats were housed in individual cages at a University Animal Care Facility. Six cats, 2 mature males, 2 mature females and 2 young females were family pets in a rural area. Beta-hemolytic streptococci were recovered from 33 (37%) of the 89 cat throats cultured, and 27 (30.3%) were identified as group G. More males (34%) than females (24%) had throat cultures positive for group G. From the 39 vaginal cultures examined, 24 (61.5%) contained beta-hemolytic streptococci and 23 (58.9%) were identified as group G streptococci. Streptococci were not recovered from the vaginal cultures of the 5 females under 6 months of age.^ Thirty one group G streptococci isolated from cats were compared with 37 isolates of group G obtained from humans (health status or site of origin unknown). More group G cat isolates (81%) produced deoxyribonuclease (DNase) than did the human isolates (36%). The proportion of cat throat and vaginal isolates producing DNase was the same. Production of nicotinamide adenine dinucleotide glycohydrolase (NADase) by group G isolates of human origin was 70%, cat throat isolates 53% and cat vaginal isolates 37%. The Serum Opacity Factor was present in 73% of the cat throat isolates of group G, 43.7% of the cat vaginal isolates and 58.6% of the human isolates. Possession of an anti-phagocytic factor (M protein like substance) demonstrated by the ability to multiply in fresh human blood was greater in the group G from cat throats (46.7%) than from cat vagina (37.5%) or from the human isolates (13.5%). Many of the biochemical characteristics of the group G streptococci of cat origin were more similar to the biochemical characteristics of group A streptococci, than to the characteristics of group G of human origin. The group G streptococci, found in a large number of cats, could be potential human pathogens, as their physiological and biological characteristics are very similar to those of group A, a known human pathogen. ^
Resumo:
This analysis provides an emergent framework that emphasizes a neglected component of both direct practice with families and organizational development. Human emotions, both beneficial (positive emotional labor) and harmful (negative emotional labor), have received short shrift in leadership development, supervision, direct practice preparation and supports, and workforce stabilization, and professionalization. Significantly, a key indicator of negative emotional labor—secondary traumatic stress (STS)—often has been ignored and neglected, despite the fact that it may be endemic in the workforce. STS typically results from traumatic events in practice, but it also stems from workplace violence. Often undetected and untreated, STS is at least a hidden correlate and perhaps a probable cause of myriad problems such as questionable practice with families, life-work conflicts, undesirable workforce turnover, and a sub-optimal organizational climate. Special interventions are needed. At the same time, new organizational designs are needed to promote and reinforce positive emotional labor. Arguably, positive emotional labor and the positive organizational climates it facilitates are requisites for harmonious relations between jobs and personal lives, desirable workforce retention, and better outcomes for children and families. What’s more, specialized interventions for positive emotional labor constitute a key component in the prevention system for STS. A dual design for positive emotional labor and STS (and other negative emotional labor) prevention/intervention is provided herewith. Early detection and rapid response systems for STS, with social work leadership, receive special attention. Guidelines for new organizational designs for emotional labor in child welfare are offered in conclusion.