912 resultados para Ali and Schaeffer function
Resumo:
OBJECTIVE To investigate the association of renal impairment on functional outcome and complications in stroke patients treated with IV thrombolysis (IVT). METHODS In this observational study, we compared the estimated glomerular filtration rate (GFR) with poor 3-month outcome (modified Rankin Scale scores 3-6), death, and symptomatic intracranial hemorrhage (sICH) based on the criteria of the European Cooperative Acute Stroke Study II trial. Unadjusted and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Patients without IVT treatment served as a comparison group. RESULTS Among 4,780 IVT-treated patients, 1,217 (25.5%) had a low GFR (<60 mL/min/1.73 m(2)). A GFR decrease by 10 mL/min/1.73 m(2) increased the risk of poor outcome (OR [95% CI]): (ORunadjusted 1.20 [1.17-1.24]; ORadjusted 1.05 [1.01-1.09]), death (ORunadjusted 1.33 [1.28-1.38]; ORadjusted 1.18 [1.11-1.249]), and sICH (ORunadjusted 1.15 [1.01-1.22]; ORadjusted 1.11 [1.04-1.20]). Low GFR was independently associated with poor 3-month outcome (ORadjusted 1.32 [1.10-1.58]), death (ORadjusted 1.73 [1.39-2.14]), and sICH (ORadjusted 1.64 [1.21-2.23]) compared with normal GFR (60-120 mL/min/1.73 m(2)). Low GFR (ORadjusted 1.64 [1.21-2.23]) and stroke severity (ORadjusted 1.05 [1.03-1.07]) independently determined sICH. Compared with patients who did not receive IVT, treatment with IVT in patients with low GFR was associated with poor outcome (ORadjusted 1.79 [1.41-2.25]), and with favorable outcome in those with normal GFR (ORadjusted 0.77 [0.63-0.94]). CONCLUSION Renal function significantly modified outcome and complication rates in IVT-treated stroke patients. Lower GFR might be a better risk indicator for sICH than age. A decrease of GFR by 10 mL/min/1.73 m(2) seems to have a similar impact on the risk of death or sICH as a 1-point-higher NIH Stroke Scale score measuring stroke severity.
Resumo:
INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.
Resumo:
Cardiac tissue engineering approaches can deliver large numbers of cells to the damaged myocardium and have thus increasingly been considered as a possible curative treatment to counteract the high prevalence of progressive heart failure after myocardial infarction (MI). Optimal scaffold architecture and mechanical and chemical properties, as well as immune- and bio-compatibility, need to be addressed. We demonstrated that radio-frequency plasma surface functionalized electrospun poly(ɛ-caprolactone) (PCL) fibres provide a suitable matrix for bone-marrow-derived mesenchymal stem cell (MSC) cardiac implantation. Using a rat model of chronic MI, we showed that MSC-seeded plasma-coated PCL grafts stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular patch implantation, whereas a steadied function was observed 4 weeks after MSC-patch implantation (relative decreases of 6% for both EF and FS).
Resumo:
Recent studies have demonstrated that the improved prognosis derived from resection of gliomas largely depends on the extent and quality of the resection, making maximum but safe resection the ultimate goal. Simultaneously, technical innovations and refined neurosurgical methods have rapidly improved efficacy and safety. Because gliomas derive from intrinsic brain cells, they often cannot be visually distinguished from the surrounding brain tissue during surgery. In order to appreciate the full extent of their solid compartment, various technologies have recently been introduced. However, radical resection of infiltrative glioma puts neurological function at risk, with potential detrimental consequences for patients' survival and quality of life. The allocation of various neurological functions within the brain varies in each patient and may undergo additional changes in the presence of a tumour (brain plasticity), making intra-operative localisation of eloquent areas mandatory for preservation of essential brain functions. Combining methods that visually distinguish tumour tissue and detect tissues responsible for critical functions now enables resection of tumours in brain regions that were previously considered off-limits, and benefits patients by enabling a more radical resection, while simultaneously lowering the risk of neurological deficits. Here we review recent and expected developments in microsurgery for glioma and their respective benefits.
Resumo:
OBJECTIVE To compare the in vitro effects of hypertonic solutions and colloids to saline on coagulation in dogs. DESIGN In vitro experimental study. SETTING Veterinary teaching hospital. ANIMALS Twenty-one adult dogs. INTERVENTIONS Blood samples were diluted with saline, 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH), 7.2% hypertonic saline (HTS), hydroxyethyl starch (HES) 130/0.4 or hydroxyethyl starch 600/0.75 at ratios of 1:22 and 1:9, and with saline and HES at a ratio of 1:3. MEASUREMENTS AND MAIN RESULTS Whole blood coagulation was analyzed using rotational thromboelastometry (extrinsic thromboelastometry-cloting time (ExTEM-CT), maximal clot firmness (MCF) and clot formation time (CFT) and fibrinogen function TEM-CT (FibTEM-CT) and MCF) and platelet function was analyzed using a platelet function analyzer (closure time, CTPFA ). All parameters measured were impaired by saline dilution. The CTPFA was prolonged by 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH) and HTS but not by HES solutions. At clinical dilutions equivalent to those generally administered for shock (saline 1:3, HES 1:9, and hypertonic solutions 1:22), CTPFA was more prolonged by HH and HTS than other solutions but more by saline than HES. No difference was found between the HES solutions or the hypertonic solutions. ExTEM-CFT and MCF were impaired by HH and HTS but only mildly by HES solutions. At clinically relevant dilutions, no difference was found in ExTEM-CFT between HTS and saline or in ExTEM-MCF between HH and saline. No consistent difference was found between the 2 HES solutions but HH impaired ExTEM-CFT and MCF more than HTS. At high dilutions, FibTEM-CT and -MCF and ExTEM-CT were impaired by HES. CONCLUSIONS Hypertonic solutions affect platelet function and whole blood coagulation to a greater extent than saline and HES. At clinically relevant dilutions, only CTPFA was markedly more affected by hypertonic solutions than by saline. At high dilutions, HES significantly affects coagulation but to no greater extent than saline at clinically relevant dilutions.
Resumo:
BACKGROUND: Hyperosmolar therapy, using either mannitol or hypertonic saline (HTS), is considered the treatment of choice for intracranial hypertension. However, hyperosmolar agents may impair coagulation and platelet function, limiting their use in patients at risk for hemorrhage. Despite this, studies evaluating the effects of mannitol compared to other hyperosmolar agents in dogs are largely lacking. The aim of this study was to compare the in vitro effects on global hemostasis and platelet function of 20 % mannitol and 3 % HTS on canine blood. METHODS: Citrated whole blood from 15 healthy dogs was diluted with 0.9 % saline, 20 % mannitol and 3 % HTS in ratios of 1:16 and 1:8. Rotational thromboelastometry (ROTEM) was used to assess clotting time (CT), clot formation time (CFT) and maximal clot firmness (MCF) following extrinsic activation (Ex-tem) and after platelet inhibition (Fib-tem). A platelet function analyzer (PFA-100) was used to assess closure time (CtPFA). RESULTS: No significant differences were observed between untreated whole blood and samples diluted with saline. Samples diluted with both mannitol and HTS were hypocoagulable compared to untreated whole blood samples. At a dilution of 1:16, no significant differences were found between any measured parameter in samples diluted with saline compared to mannitol or HTS. At a 1:8 dilution, CtPFA was prolonged in samples diluted with mannitol and HTS compared to saline, and CtPFA was prolonged more with mannitol than HTS. Ex-tem CT was increased at a 1:8 dilution with mannitol compared to HTS. Ex-tem CFT was prolonged at a 1:8 dilution with both agents compared to saline, and was prolonged more with mannitol than HTS. Ex-tem MCF was reduced at a 1:8 dilution with both agents compared to saline. DISCUSSION AND CONCLUSIONS: Data in this study indicate that both mannitol and HTS affect canine platelet function and whole blood coagulation in vitro in a dose-dependent fashion. The most pronounced effects were observed after high dilutions with mannitol, which impaired platelet aggregation, clot formation time, clot strength, and fibrin formation significantly more than HTS. Further in vivo studies are necessary before recommendations can be made
Resumo:
BACKGROUND Complex proximal femoral deformities, including an elevated greater trochanter, short femoral neck, and aspherical head-neck junction, often result in pain and impaired hip function resulting from intra-/extraarticular impingement. Relative femoral neck lengthening may address these deformities, but mid-term results of this approach have not been widely reported. QUESTIONS/PURPOSES Do patients who have undergone relative femoral neck lengthening show (1) less hip pain and greater function; (2) improved radiographic parameters; (3) significant complications requiring subsequent surgery; and (4) progression of osteoarthrosis (OA) or conversion to total hip arthroplasty (THA) at mid-term followup? METHODS We retrospectively reviewed 40 patients (41 hips) with isolated relative femoral neck lengthening between 1998 and 2006 with sequelae of Legg-Calvé-Perthes disease (38 hips [93%]), slipped capital femoral epiphysis (two hips [5%]), and postseptic arthritis (one hip [2%]). During this time, the general indications for this procedure included a high-riding greater trochanter with a short femoral neck with abductor weakness and symptomatic intra-/extraarticular impingement. Mean patient followup was 8 years (range, 5-13 years), and complete followup was available in 38 patients (39 hips [95%]). We evaluated pain and function with the impingement test, limp, abductor force, Merle d'Aubigné-Postel score, and range of motion. Radiographic parameters included trochanteric height, alpha angle, and progression of OA. Subsequent surgeries, complications, and conversion to THA were summarized. RESULTS The proportion of positive anterior impingement tests decreased from 93% (38 of 41 hips) preoperatively to 49% (17 of 35 hips) at latest followup (p = 0.002); the proportion of limp decreased from 76% (31 of 41 hips) to 9% (three of 35 hips; p < 0.001); the proportion of normal abductor strength increased from 17% (seven of 41 hips) to 91% (32 of 35 hips; p < 0.001); mean Merle d'Aubigné-Postel score increased from 14 ± 1.7 (range, 9-17) to 17 ± 1.5 (range, 13-18; p < 0.001); mean internal rotation increased to 25° ± 15° (range, 0°-60°; p = 0.045), external rotation to 32° ± 14° (range, 5°-70°; p = 0.013), and abduction to 37° ± 13° (range, 10°-50°; p = 0.004). Eighty percent of hips (33 of 41 hips) showed normal trochanteric height; alpha angle improved to 42° ± 10° (range, 27°-90°). Two hips (5%) had subsequent surgeries as a result of lack of containment; four of 41 hips (10%) had complications resulting in reoperation. Fourteen of 35 hips (40%) showed progression of OA; four of 40 hips (10%) converted to THA. CONCLUSIONS Relative femoral neck lengthening in hips with combined intra- and extraarticular impingement results in reduced pain, improved function, and improved radiographic parameters of the proximal femur. Although lack of long-term complications is gratifying, progression of OA was not prevented and remains an area for future research.
Resumo:
UNLABELLED Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls: brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01780207.
Resumo:
Background Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep disordered breathing (SDB) frequently occurs at high altitude. At low altitude SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that compared to healthy high-altitude dwellers, in patients with CMS, SDB and nocturnal hypoxemia are more pronounced and related to vascular dysfunction. Methods We performed overnight sleep recordings, and measured systemic and pulmonary-artery pressure in 23 patients with CMS (mean±SD age 52.8±9.8 y) and 12 healthy controls (47.8±7.8 y) at 3600 m. In a subgroup of 15 subjects with SDB, we searched for PFO with transesophagal echocardiography. Results The major new findings were that in CMS patients, a) SDB and nocturnal hypoxemia was more severe (P<0.01) than in controls (apnea/hypopnea index, AHI, 38.9±25.5 vs. 14.3±7.8[nb/h]; SaO2, 80.2±3.6 vs. 86.8±1.7[%], CMS vs. controls), and b) AHI was directly correlated with systemic blood pressure (r=0.5216, P=0.001) and pulmonary-artery pressure (r=0.4497, P=0.024). PFO was associated with more severe SDB (AHI 48.8±24.7 vs. 14.8±7.3[nb/h], P=0.013, PFO vs. no PFO) and hypoxemia. Conclusion SDB and nocturnal hypoxemia are more severe in CMS patients than in controls and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of PFO may improve SDB, hypoxemia and vascular dysfunction in CMS patients. Clinical Trials Gov Registration NCT01182792.
Resumo:
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown'' but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Resumo:
Background. Research investigating symptom management in patients with chronic obstructive pulmonary disease (COPD) largely has been undertaken assuming the homeostatic construct, without regard to potential roles of circadian rhythms. Temporal relations among dyspnea, fatigue, peak expiratory flow rate (PEFR) and objective measures of activity/rest have not been reported in COPD. ^ Objectives. The specific aims of this study were to (1) explore the 24-hour patterns of dyspnea, fatigue, and PEFR in subjects with COPD; (2) examine the relations among dyspnea, fatigue, and PEFR in COPD; and (3) examine the relations among objective measures of activity/rest and dyspnea, fatigue, and PEFR in COPD. ^ Methods. The repeated-measures design involved 10 subjects with COPD who self-assessed dyspnea and fatigue by 100 mm visual analog scales, and PEFR by peak flow meter in their home 5 times a day for 8 days. Activity/rest was measured by wrist actigraphy. Single and population mean cosinor analyses and correlations were computed for dyspnea, fatigue, and PEFR; correlations were done among these variables and activity/rest. ^ Results. Circadian rhythms were documented by single cosinor analysis in 40% of the subjects for dyspnea, 60% for fatigue, and 60% for PEFR. The population cosinor analysis of PEFR yielded a significant rhythm (p < .05). The 8-day 24-hour means of dyspnea and fatigue was moderately correlated (r = .48, p < .01). Dyspnea and PEFR, and fatigue and PEFR, were weakly correlated in a negative way (r = −.11, p < .05 and r = −.15, p < .01 respectively). Weak to moderate correlations (r = .12–.34, p < .05) were demonstrated between PEFR and mean activity level measured up to 4 hours before PEFR measurement. ^ Conclusions. The findings suggest that (1) the dyspnea and fatigue experienced by COPD patients are moderately related, (2) there is a weak to modest positive relation between PEFR and activity levels, and (3) temporal variation in lung function may not affect the dyspnea and fatigue experienced by patients with COPD. Further research, examining the relations among dyspnea, fatigue, PEFR, and activity/rest is needed. Replication of this study is suggested with a larger sample size. ^
Resumo:
In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^