976 resultados para Algorithmic Probability
Resumo:
An introductory course in probability and statistics for third-year and fourth-year electrical engineering students is described. The course is centered around several computer-based projects that are designed to achieve two objectives. First, the projects illustrate the course topics and provide hands-on experience for the students. The second and equally important objective of the projects is to convey the relevance and usefulness of probability and statistics to practical problems that undergraduate students can appreciate. The benefit of this course as to motivate electrical engineering students to excel in the study of probability concepts, instead of viewing the subject as one more course requirement toward graduation. The authors co-teach the course, and MATLAB is used for mast of the computer-based projects
Resumo:
The generalized failure rate of a continuous random variable has demonstrable importance in operations management. If the valuation distribution of a product has an increasing generalized failure rate (that is, the distribution is IGFR), then the associated revenue function is unimodal, and when the generalized failure rate is strictly increasing, the global maximum is uniquely specified. The assumption that the distribution is IGFR is thus useful and frequently held in recent pricing, revenue, and supply chain management literature. This note contributes to the IGFR literature in several ways. First, it investigates the prevalence of the IGFR property for the left and right truncations of valuation distributions. Second, we extend the IGFR notion to discrete distributions and contrast it with the continuous distribution case. The note also addresses two errors in the previous IGFR literature. Finally, for future reference, we analyze all common (continuous and discrete) distributions for the prevalence of the IGFR property, and derive and tabulate their generalized failure rates.
Resumo:
Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 familes from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO’s concordance index from 0.758 to 0.762 (p = 0.046), improves its positive predictive value from 35% to 39% (p < 10−6) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability < 10%. Copyright c 2000 John Wiley & Sons, Ltd.
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.