775 resultados para Algorithm clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulating mechanisms of branchingmorphogenesis of fetal lung rat explants have been an essential tool formolecular research.This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development frommicroscopic images. Methods.Theouter contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to themanualmethod. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To estimate the incidence rate of type 1 diabetes in the urban area of Santiago, Chile, from March 21, 1997 to March 20, 1998, and to assess the spatio-temporal clustering of cases during that period. METHODS: All sixty-one incident cases were located temporally (day of diagnosis) and spatially (place of residence) in the area of study. Knox's method was used to assess spatio-temporal clustering of incident cases. RESULTS: The overall incidence rate of type 1 diabetes was 4.11 cases per 100,000 children aged less than 15 years per year (95% confidence interval: 3.06--5.14). The incidence rate seems to have increased since the last estimate of the incidence calculated for the years 1986--1992 in the metropolitan region of Santiago. Different combinations of space-time intervals have been evaluated to assess spatio-temporal clustering. The smallest p-value was found for the combination of critical distances of 750 meters and 60 days (uncorrected p-value = 0.048). CONCLUSIONS: Although these are preliminary results regarding space-time clustering in Santiago, exploratory analysis of the data method would suggest a possible aggregation of incident cases in space-time coordinates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 8th. World Congress on Computational Mechanics (WCCM8)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an algorithm to efficiently generate the state-space of systems specified using the IOPT Petri-net modeling formalism. IOPT nets are a non-autonomous Petri-net class, based on Place-Transition nets with an extended set of features designed to allow the rapid prototyping and synthesis of system controllers through an existing hardware-software co-design framework. To obtain coherent and deterministic operation, IOPT nets use a maximal-step execution semantics where, in a single execution step, all enabled transitions will fire simultaneously. This fact increases the resulting state-space complexity and can cause an arc "explosion" effect. Real-world applications, with several million states, will reach a higher order of magnitude number of arcs, leading to the need for high performance state-space generator algorithms. The proposed algorithm applies a compilation approach to read a PNML file containing one IOPT model and automatically generate an optimized C program to calculate the corresponding state-space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.